Skip to main content
Log in

Actinobacteria Associated with Vineyard Soils of Algeria: Classification, Antifungal Potential Against Grapevine Trunk Pathogens and Plant Growth-Promoting Features

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Grapevine trunk diseases (GTDs) are among the most destructive diseases of vineyards worldwide, including Algeria. In the fungal complex involved in GTD symptoms, referred as grapevine trunk-pathogens, Paeomoniella chlamydospora and Phaeoacremonium minimum have a determining infecting role as pioneer fungi. Due to the lack of efficiency of conventional disease management practices, a search for alternative strategies, such as biocontrol, is needed. Taking the approach of looking for biocontrol candidates in the environment surrounding the plant, the present study explored actinobacteria diversity within vineyard soils of six grape-producing regions in Algeria. Based on their 16S rRNA gene sequence, identification and phylogenic analysis were performed on the 40 isolates of actinobacteria obtained. Forty percent of strains were attached to Streptomyces, including two evidenced new species, and 32.5% were affiliated to Saccharothrix. The other less represented genera were Actinoplanes, Nocardia, Nocardiopsis, Lentzea, Nonomuraea, Promicromonospora, Saccharopolyspora and Streptosporangium. Screening based on antagonistic and plant growth promotion (PGP) abilities of the strains showed that 47.5% of the isolates exhibited appreciable antagonistic activities against both Pa. chlamydospora and Pm. minimum, with the two best strains being Streptomyces sp. Ms18 and Streptomyces sp. Sb11. Screening for plant growth promoting properties demonstrated that majority of the strains were able to produce indole acetic acid, siderophores, ammonia, ACC deaminase, cellulase and amylase, and fix N2. Through a PGP-traits-based cluster analysis, the most interesting strains were highlighted. Taking into account both antagonistic and PGP properties, Streptomyces sp Sb11 was selected as the most promising candidate for further evaluations of its efficiency in a GTDs context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. OIV (2018). Statistical report on world vitiviniculture. International Organization of Vine and Wine: Paris, France. https://www.oiv.int

  2. MADRP 2017. Agricultural statistics‒B series, Ministère de l'Agriculture, du développement Rurale et de la Pêche. https://madrp.gov.dz/agriculture/statistiques-agricoles

  3. Gramaje D, Úrbez-Torres JR, Sosnowski MR (2018) Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Dis 102:12–39. https://doi.org/10.1094/PDIS-04-17-0512-FE

    Article  PubMed  Google Scholar 

  4. Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, Spagnolo A, Clément C, Fontaine F (2013) Grapevine trunk diseases: complex and still poorly understood. Plant Pathol 62:243–265. https://doi.org/10.1111/j.1365-3059.2012.02674.x

    Article  Google Scholar 

  5. Fontaine F, Pinto C, Vallet J, Clément C, Gomes AC, Spagnolo A (2015) The effects of grapevine trunk diseases (GTDs) on vine physiology. Eur J Plant Pathol 144:707–721. https://doi.org/10.1007/s10658-015-0770-0

    Article  CAS  Google Scholar 

  6. Mondello V, Songy A, Battiston E, Pinto C, Coppin C, Trotel-Aziz P, Clément C, Mugnai L, Fontaine F (2018) Grapevine trunk diseases: a review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Dis 102:1189–1217. https://doi.org/10.1094/PDIS-08-17-1181-FE

    Article  PubMed  CAS  Google Scholar 

  7. De la Fuente M, Fontaine F, Gramaje D, Armengol J, Smart R, Nagy ZA, Borgo M, Rego C, Corio-Costet MF (2016) Grapevine trunk diseases. A review, 1st edn. OIV publications, Paris, p 24

    Google Scholar 

  8. Ravaz L (1905) Sur la cause du dépérissement des vignes de la Tunisie, de l’Algérie et du Midi de la France. Comptes Rendus de l’Académie des Sci, Paris 141:58–59

    Google Scholar 

  9. Berraf A, Péros JP (2005) Importance de l’eutypiose et de l’esca en Algérie et structure de la communauté fongique associée. J Int Sci Vigne Vin 39:121–128

    Google Scholar 

  10. Hofstetter V, Buyck B, Croll D, Viret O, Couloux A, Gindro K (2012) What if esca disease of grapevine were not a fungal disease? Fungal Divers 54:51–67. https://doi.org/10.1007/s13225-012-0171-z

    Article  Google Scholar 

  11. Fussler L, Kobes N, Bertrand F, Maumy M, Grosman J, Savary S (2008) A characterization of grapevine trunk diseases in France from data generated by the national grapevine wood diseases survey. Phytopathol 98:571–579. https://doi.org/10.1094/PHYTO-98-5-0571

    Article  CAS  Google Scholar 

  12. Compant S, Muzammil S, Lebrihi A, Mathieu F (2013) Visualization of grapevine root colonization by the Saharan soil isolate Saccharothrix algeriensis NRRL B˗24137 using DOPE˗FISH microscopy. Plant Soil 370:583–591. https://doi.org/10.1007/s11104-013-1648-6

    Article  CAS  Google Scholar 

  13. Halleen F, Fourie PH, Lombard PJ (2010) Protection of grapevine pruning wounds against Eutypa lata by biological and chemical methods. S Afr J Enol Vitic 31:125–132. https://doi.org/10.21548/31-2-1409

    Article  CAS  Google Scholar 

  14. Kotze C, Niekerk JV, Mostert L, Halleen F, Fourie P (2011) Evaluation of biocontrol agents for grapevine pruning wound protection against trunk pathogen infection. Phytopathol Mediterr 50:S247–S263. https://doi.org/10.14601/Phytopathol_Mediterr-8960

    Article  Google Scholar 

  15. Yacoub A, Gerbore J, Magnin N, Chambon P, Dufour MC, Corio-Costet MF, Guyoneaud R, Rey P (2016) Ability of Pythium oligandrum strains to protect Vitis vinifera L., by inducing plant resistance against Phaeomoniella chlamydospora, a pathogen involved in Esca, a grapevine trunk disease. Biol Control 92:7–16. https://doi.org/10.1016/j.biocontrol.2015.08.005

    Article  Google Scholar 

  16. Haidar R, Roudet J, Bonnard O, Dufour MC, Corio-Costet MF, Fert M, Gautier T, Deschamps A, Fermaud M (2016) Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiol Res 192:172–184. https://doi.org/10.1016/j.micres.2016.07.003

    Article  PubMed  Google Scholar 

  17. Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol 97:9621–9636. https://doi.org/10.1007/s00253-013-5206-1

    Article  PubMed  CAS  Google Scholar 

  18. Sathya A, Vijayabharathi R, Gopalakrishnan S (2017) Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech. 7:102. https://doi.org/10.1007/s13205-017-0736-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney RK (2016) Exploring plant growth˗promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz J Microbiol 47:85–95. https://doi.org/10.1016/j.bjm.2015.11.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Anwar S, Ali B, Sajid I (2016) Screening of rhizospheric actinomycetes for various in˗vitro and in˗vivo plant growth promoting (PGP) traits and for agroactive compounds. Front Microbiol 7:1334. https://doi.org/10.3389/fmicb.2016.01334

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zamoum M, Goudjal Y, Sabaou N, Mathieu F, Zitouni A (2017) Development of formulations based on Streptomyces rochei strain PTL2 spores for biocontrol of Rhizoctonia solani damping˗off of tomato seedlings. Biocontrol Sci Technol 27:72–38. https://doi.org/10.1080/09583157.2017.1334257

    Article  Google Scholar 

  22. Hsu SC, Lockwood JL (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl Microbiol 29:422–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang Y, Chen X, Lou K, Mao P (2013) Cultivable soil actinomycete communities in some areas of western China. Acad J Biotech 1:001–013. https://doi.org/10.15413/ajb.2012.0104

    Article  CAS  Google Scholar 

  24. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340. https://doi.org/10.1099/00207713-16-3-313

    Article  Google Scholar 

  25. Liu D, Coloe S, Baird R, Pedersen J (2000) Rapid mini˗preparation of fungal DNA for PCR. J Clin Microbiol 38:471

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kumar S, Stecher G, Tamura K (2016) Mega 7: molecular evolutionary genetics analysis in version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Li FN, Lu Q, Liao SL, Jin T, Li W, Sun CH (2019) Labedella phragmitis sp. nov. and Labedella populi sp. nov., two endophytic actinobacteria isolated from plants in the Taklamakan desert and emended description of the genus Labedella. Syst Appl Microbiol 42:126004

    Article  CAS  PubMed  Google Scholar 

  29. Toju H, Tanabe AS, Yamamoto S, Sato H (2012) High˗coverage ITS primers for the DNA˗based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7:e40863. https://doi.org/10.1371/journal.pone.0040863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gramaje D, León M, Pérez-Sierra A, Burgess T, Armengol J (2014) New Phaeoacremonium species isolated from sandalwood trees in Western Australia. IMA Fungus 5:67–77. https://doi.org/10.5598/imafungus.2014.05.01.08

    Article  PubMed  PubMed Central  Google Scholar 

  31. Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 29:1821–1829. https://doi.org/10.1007/s11274-013-1344-y

    Article  PubMed  CAS  Google Scholar 

  32. Toumatia O, Compant S, Yekkour A, Goudjal Y, Sabaou N, Mathieu F, Sessitsch A, Zitouni A (2016) Biocontrol and plant growth promoting properties of Streptomyces mutabilis strain IA1 isolated from a Saharan soil on wheat seedlings and visualization of its niches of colonization. S Afr J Botany 105:234–239. https://doi.org/10.1016/j.sajb.2016.03.020

    Article  Google Scholar 

  33. Cappuccino J, Sherman N (2014) Microbiology. A laboratory manual. Pearson Education, New York

    Google Scholar 

  34. Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroong N (2011) Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47:44–54. https://doi.org/10.1016/j.ejsobi.2010.11.004

    Article  CAS  Google Scholar 

  35. Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U (2016) Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3˗16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270. https://doi.org/10.1016/j.micres.2016.08.005

    Article  PubMed  CAS  Google Scholar 

  36. Passari AK, Mishra VK, Leo VV, Gupta VK, Singh BP (2016) Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Micrrobiol Res 193:57–73. https://doi.org/10.1016/j.micres.2016.09.006

    Article  CAS  Google Scholar 

  37. Lê S, Josse J, Husson F (2008) FactoMineR: An R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  38. Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch A (2017) Shared and host˗specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol 19:1407–1424. https://doi.org/10.1111/1462-2920.13618

    Article  PubMed  Google Scholar 

  39. Loqman S, Barka EA, Clément C, Ouhdouch Y (2009) Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 25:81–91. https://doi.org/10.1007/s11274-008-9864-6

    Article  Google Scholar 

  40. Álvarez-Pérez JM, González-García S, Cobos R, Olego MÁ, Ibañez A, Díez-Galán A, Garzón-Jimeno E, Coque JJR (2017) Use of endophytic and rhizosphere actinobacteria from grapevine plants to reduce nursery fungal graft infections that lead to young grapevine decline. Appl Environ Microbiol 83:e01564–e1617. https://doi.org/10.1128/AEM.01564-17

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nerva L, Zanzotto A, Gardiman M, Gaiotti F, Chitarra W (2019) Soil microbiome analysis in an ESCA diseased vineyard. Soil Biol Biochem 135:60–70. https://doi.org/10.1016/j.soilbio.2019.04.014

    Article  CAS  Google Scholar 

  42. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. https://doi.org/10.1099/ijs.0.059774-0

    Article  PubMed  Google Scholar 

  43. Merrouche R, Yekkour A, Lamari L, Zitouni A, Mathieu F, Sabaou N (2017) Efficiency of Saccharothrix algeriensis NRRL B˗24137 and its produced antifungal dithiolopyrrolones compounds to suppress Fusarium oxysporum˗induced wilt disease occurring in some cultivated crops. Arab J Sci Eng 42:2321–2327. https://doi.org/10.1007/s13369-017-2504-4

    Article  CAS  Google Scholar 

  44. Minaxi NL, Yadav RC, Saxena J (2012) Characterization of multifaceted Bacillus sp. RM˗2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl Soil Ecol 59:124–135. https://doi.org/10.1016/j.apsoil.2011.08.001

    Article  Google Scholar 

  45. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth˗promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Saif S, Khan MS, Zaidi A, Ahmad E (2014) Role of phosphate˗solubilizing Actinomycetes in plant growth promotion: current perspective. phosphate solubilizing microorganisms. Springer, Cham, pp 137–156. https://doi.org/10.1007/978-3-319-08216-5_6

    Chapter  Google Scholar 

  47. Olanrewaju OS, Babalola OO (2018) Streptomyces: implications and interactions in plant growth promotion. Appl Microbiol Biotechnol 103:1179–1188. https://doi.org/10.1007/s00253-018-09577-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Boukaya N, Goudjal Y, Zamoum M, Chaabane Chaouch F, Sabaou N, Mathieu F, Zitouni A (2018) Biocontrol and plant growth promoting capacities of actinobacterial strains from the Algerian Sahara and characterisation of Streptosporangium becharense SG1 as a promising biocontrol agent. Biocontrol Sci Technol 28:858–873. https://doi.org/10.1080/09583157.2018.1501466

    Article  Google Scholar 

Download references

Acknowledgements

We thank the late Prof. Sabaou N (LBSM, Ecole Normale Supérieure de Kouba, Algiers, Algeria) for great help in isolation and taxonomic analysis of actinobacteria. This work was also supported by EFRR “Multidisciplinary research to increase application potential of nanomaterials in agricultural practice” (No. CZ.02.1.01/0.0/0.0/16_025/0007314).

Author information

Authors and Affiliations

Authors

Contributions

AM, AB-T and AY conceived and managed the project. AL and ND performed the experiments. AZ, SM and AY analyzed and computed the data. PR and PL assisted the isolation of GTD-related fungal pathogens with facilities supply and technical advising. All authors contributed to the data collection. AL, AM, and AY drafted the manuscript which was critically reviewed by all of the authors.

Corresponding author

Correspondence to Atika Meklat.

Ethics declarations

Conflict of interest

No conflict of interest to be declared.

Ethical Approval

The authors declare that ethical standards have been followed and that no human participants or animals were involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laassami, A., Yekkour, A., Meklat, A. et al. Actinobacteria Associated with Vineyard Soils of Algeria: Classification, Antifungal Potential Against Grapevine Trunk Pathogens and Plant Growth-Promoting Features. Curr Microbiol 77, 2831–2840 (2020). https://doi.org/10.1007/s00284-020-02097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02097-x

Navigation