Skip to main content
Log in

In Silico Study and Optimization of Bacillus megaterium alpha-Amylases Production Obtained from Honey Sources

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to screen alpha-amylase producing microorganisms from honey as a low water activity medium, a suitable source for selecting stable and cost-beneficial bacterial enzyme production systems. Plackett–Burman method was used to select twelve effective factors including pH, inoculum size, temperature, time, corn starch, KH2PO4, peptone, MgSO4, CaCl2, NaCl, glycerin, and yeast extract concentrations on bacterial alpha-amylases production yield. The Box–Behnken method was utilized to optimize the level of selected significant factors. The stability of bacterial alpha-amylases was also determined in low pH and high-temperature conditions. In addition, in silico study was used to create the alpha-amylase structure and study the stability in high-temperature and low water available condition. Among all isolated and characterized microorganisms, Bacillus megaterium produced the highest amount of alpha-amylases. The in silico data showed the enzyme 3D structure similarity to alpha-amylase from Halothermothrix orenii and highly negative charge amino acids on its surface caused the enzyme activity and stability in low water conditions. Based on Box–Behnken results, the temperature 35 °C, pH 6 and starch 40 g/l were determined as the optimum level of significant factors to achieve the highest alpha-amylases unit (101.44 U/ml). This bacterial alpha-amylases enzyme showed stability at pH 5 and a range of temperatures from 40 to 60 °C that indicates this enzyme may possess the potential for using in industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Snowdon JA, Cliver DO (1996) Microorganisms in honey. Int J Food Microbiol 31(1–3):1–26. https://doi.org/10.1016/0168-1605(96)00970-1

    Article  PubMed  CAS  Google Scholar 

  2. Mohammed F, Abdulwali N, Guillaume D, Bchitou R (2018) Element content of Yemeni honeys as a long-time marker to ascertain honey botanical origin and quality. LWT-Food Sci Technol 88:43–46

    CAS  Google Scholar 

  3. Chirife J, Zamora MC, Motto A (2006) The correlation between water activity and moisture in honey: fundamental aspects and application to Argentine honeys. J Food Eng 72(3):287–292

    Google Scholar 

  4. Tanyildizi MS, Özer D, Elibol M (2005) Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochem 40(7):2291–2296

    CAS  Google Scholar 

  5. Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38(11):1599–1616

    CAS  Google Scholar 

  6. Sundarram A, Murthy TPK (2014) α-Amylase production and applications: a review. J Appl Environ Microbiol 2(4):166–175

    Google Scholar 

  7. Tanyildizi MS, Elibol M, Özer D (2006) Optimization of growth medium for the production of α-amylase from Bacillus amyloliquefaciens using response surface methodology. J Chem Technol Biotechnol 81(4):618–622

    CAS  Google Scholar 

  8. Naili B, Sahnoun M, Bejar S, Kammoun R (2016) Optimization of submerged Aspergillus oryzae S2 alpha-amylase production. Food Sci Biotechnol 25(1):185–192. https://doi.org/10.1007/s10068-016-0028-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. de Souza PM, de Oliveira MP (2010) Application of microbial alpha-amylase in industry—a review. Braz J Microbiol 41(4):850–861. https://doi.org/10.1590/S1517-83822010000400004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) a-Amylases from microbial sources—an overview on recent developments. Food Technol Biotechnol 44(2):173–184

    CAS  Google Scholar 

  11. Sudan SK, Kumar N, Kaur I, Sahni G (2018) Production, purification and characterization of raw starch hydrolyzing thermostable acidic alpha-amylase from hot springs, India. Int J Biol Macromol 117:831–839. https://doi.org/10.1016/j.ijbiomac.2018.05.231

    Article  PubMed  CAS  Google Scholar 

  12. Silvestri EE, Yund C, Taft S, Bowling CY, Chappie D, Garrahan K, Brady-Roberts E, Stone H, Nichols TL (2017) Considerations for estimating microbial environmental data concentrations collected from a field setting. J Expo Sci Environ Epidemiol 27(2):141–151. https://doi.org/10.1038/jes.2016.3

    Article  PubMed  Google Scholar 

  13. Aguilar G, Morlon-Guyot J, Trejo-Aguilar B, Guyot J (2000) Purification and characterization of an extracellular α-amylase produced by Lactobacillus manihotivorans LMG 18010T, an amylolytic lactic acid bacterium. Enz Microb Technol 27(6):406–413

    CAS  Google Scholar 

  14. Fiedler M, Skerra A (2001) proBA complementation of an auxotrophic E. coli strain improves plasmid stability and expression yield during fermenter production of a recombinant antibody fragment. Gene 274(1–2):111–118. https://doi.org/10.1016/s0378-1119(01)00629-1

    Article  PubMed  CAS  Google Scholar 

  15. Sharma S, Malik A, Satya S (2009) Application of response surface methodology (RSM) for optimization of nutrient supplementation for Cr (VI) removal by Aspergillus lentulus AML05. J Hazard Mater 164(2–3):1198–1204. https://doi.org/10.1016/j.jhazmat.2008.09.030

    Article  PubMed  CAS  Google Scholar 

  16. Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour Technol 99(11):4597–4602. https://doi.org/10.1016/j.biortech.2007.07.028

    Article  PubMed  CAS  Google Scholar 

  17. Kammoun R, Naili B, Bejar S (2008) Application of a statistical design to the optimization of parameters and culture medium for alpha-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresour Technol 99(13):5602–5609. https://doi.org/10.1016/j.biortech.2007.10.045

    Article  PubMed  CAS  Google Scholar 

  18. Vyas G, Sharma N (2015) Production and optimization of α-amylase from a novel thermoalkalophilic Bacillus sonorensis GV2 isolated from mushroom compost. Proc Indian Natl Sci Acad 81:1207–1221

    Google Scholar 

  19. Kahraman T, Buyukunal SK, Vural A, Altunatmaz SS (2010) Physico-chemical properties in honey from different regions of Turkey. Food Chem 123(1):41–44

    CAS  Google Scholar 

  20. Morya VK, Yadav S, Kim E-K, Yadav D (2012) In silico characterization of alkaline proteases from different species of Aspergillus. Appl Biochem Biotechnol 166(1):243–257

    PubMed  CAS  Google Scholar 

  21. Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nature Biotechnol 30(11):1072

    CAS  Google Scholar 

  22. Akhi MT, Ghotaslou R, Alizadeh N, Yekani M, Beheshtirouy S, Asgharzadeh M, Pirzadeh T, Memar MY (2017) Nim gene-independent metronidazole-resistant Bacteroides fragilis in surgical site infections. GMS Hyg Infect Control. https://doi.org/10.3205/dgkh000298

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tarhriz V, Mohammadzadeh F, Hejazi MS, Nematzadeh G, Rahimi E (2011) Isolation and characterization of some aquatic bacteria from Qurugol Lake in Azerbaijan under aerobic conditions. Adv Environ Biol 4:3173–3179

    Google Scholar 

  24. Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 20. Bioinformatics 23(21):2947–2948

    PubMed  CAS  Google Scholar 

  25. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucl Acids Res 33(suppl 2):W244–W248

    PubMed  PubMed Central  Google Scholar 

  27. Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 47(1):5.6.1–5.6.32

    Google Scholar 

  28. Hlinomaz O, Kaifoszova Z, Beranova M, Machulka T, Belaskova S, Abreu A, Pereira H, Kanakakis J, Kletsiou E, Mauri F (2018) P6259 Improving STEMI patients outcome by implementing nurse assisted patient education program at discharge from primary PCI hospital. Eur Heart J 39(Suppl 1):ehy566

    Google Scholar 

  29. Sarian FD, Janecek S, Pijning T, Ihsanawati NZ, Radjasa OK, Dijkhuizen L, Natalia D, van der Maarel MJ (2017) A new group of glycoside hydrolase family 13 alpha-amylases with an aberrant catalytic triad. Sci Rep 7:44230. https://doi.org/10.1038/srep44230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wang C-H, Liu X-L, Huang R-B, He B-F, Zhao M-M (2018) Enhanced acidic adaptation of Bacillus subtilis Ca-independent alpha-amylase by rational engineering of pKa values. Biochem Eng J 139:146–153

    CAS  Google Scholar 

  31. Zhao W, Zheng J, Wang Y-g, Zhou H-b (2011) A marked enhancement in production of amylase by Bacillus amyloliquefaciens in flask fermentation using statistical methods. J Cent South Univ Technol 18(4):1054–1062

    CAS  Google Scholar 

  32. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234(4774):364–368

    PubMed  CAS  Google Scholar 

  33. Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem 88(6):1895–1898

    PubMed  CAS  Google Scholar 

  34. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl Acids Res 35(suppl 2):W407–W410

    PubMed  PubMed Central  Google Scholar 

  35. Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr Sect D Biol Crystallogr 66(1):12–21

    CAS  Google Scholar 

  36. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Meth Enzymol 277:396–404

    CAS  Google Scholar 

  37. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2(9):1511–1519

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4(2):91–98

    PubMed  CAS  Google Scholar 

  39. Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K (2003) Unique amino acid composition of proteins in halophilic bacteria. J Mol Biol 327(2):347–357

    PubMed  CAS  Google Scholar 

  40. Bieger B, Essen L-O, Oesterhelt D (2003) Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from Halobacterium salinarum. Structure 11(4):375–385

    PubMed  CAS  Google Scholar 

  41. Karan R, Capes MD, DasSarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8(1):4

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Sodhi HK, Sharma K, Gupta JK, Soni SK (2005) Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. Process Biochem 40(2):525–534

    CAS  Google Scholar 

  43. Ahmed SA, Mostafa FA, Helmy WA, Abdel-Naby MA (2017) Improvement of bacterial α-amylase production and application using two steps statistical factorial design. Biocatal Agric Biotechnol 10:224–233

    Google Scholar 

  44. Pathania S, Sharma N, Handa S (2017) Optimization of culture conditions for production of amylase by Bacillus amyloliquifaciens SH8 using response surface methodology. Proc Indian Natl Sci Acad 1:203–210

    Google Scholar 

  45. Daniel JC, Sudantharadevi V, Sowmiya S (2017) Influence of media components and pH on the production of alpha amylase from Bacillus sp. SJC B03. Indian J Appl Microbiol 20(1):55–62

  46. Bakri Y, Ammouneh H, El-Khouri S, Harba M, Thonart P (2012) Isolation and identification of a new Bacillus strain for amylase production. Res Biotechnol 3(6):51–58

    Google Scholar 

  47. Goyal N, Gupta J, Soni S (2005) A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enz Microb Technol 37(7):723–734

    CAS  Google Scholar 

  48. Srivastava RA, Baruah JN (1986) Culture conditions for production of thermostable amylase by Bacillus stearothermophilus. Appl Environ Microbiol 52(1):179–184

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Anupama A, Jayaraman G (2011) Detergent stable, halotolerantɑ-amylase from Bacillus aquimaris vitp4 exhibits reversible unfolding. Int J Appl Biol Pharm Technol 2(2):336–376

    Google Scholar 

  50. Deb P, Talukdar SA, Mohsina K, Sarker PK, Sayem SA (2013) Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springerplus 2(1):154. https://doi.org/10.1186/2193-1801-2-154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Paul JS, Lall B, Jadhav S, Tiwari K (2017) Parameter’s optimization and kinetics study of α-amylase enzyme of Bacillus sp. MB6 isolated from vegetable waste. Pro Biochem 52:123–129

    CAS  Google Scholar 

  52. Božić N, Ruiz J, López-Santín J, Vujčić Z (9945a) Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochem Eng J 53(2):203–209

    Google Scholar 

  53. Burhan A, Nisa U, Gökhan C, Ömer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT-6. Process Biochem 38(10):1397–1403

    CAS  Google Scholar 

  54. Yang C-H, Liu W-H (2004) Purification and properties of a maltotriose-producing α-amylase from Thermobifida fusca. Enz Microb Technol 35(2–3):254–260

    CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The financial support of the Tabriz University of Medical Sciences is gratefully acknowledged. The results of this article are derived from the Ph.D. thesis of Babak Elyasi Far registered in Tabriz University of Medical Sciences, Tabriz, Iran. No ethical issues to be promulgated.

Author information

Authors and Affiliations

Authors

Contributions

BEF performed the study and drafted the manuscript. AD revised the manuscript. AYK designed the study, edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Ahmad Yari Khosroushahi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. All authors designed the experiment, conducted and wrote the manuscript. All authors have approved the final article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyasi Far, B., Dilmaghani, A. & Yari Khosroushahi, A. In Silico Study and Optimization of Bacillus megaterium alpha-Amylases Production Obtained from Honey Sources. Curr Microbiol 77, 2593–2601 (2020). https://doi.org/10.1007/s00284-020-02019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02019-x

Navigation