Skip to main content

Advertisement

Log in

Species-Specific Identification of Streptococcus based on DNA Marker in 16S–23S rDNA Internal Transcribed Spacer

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Streptococcus is closely correspondent to human. The accurate species-specific identification method of Streptococcus is important for the bacteria clinical diagnosis, molecular epidemiological analysis, and microecological study. In the last decades, DNA markers are widely utilized for identification of prokaryotic species. However, 16S rDNA, the most popular bacterial DNA marker, cannot properly distinguish closely related Streptococcus species. In present study, we employed 16S–23S rRNA gene internal transcribed spacer (ITS) sequence to explore the species-specific DNA marker. We predicted the secondary structure of Streptococcus ITS sequence transcribed products. Then we identified that the specific and consensus sequences in the primary structure can be found occupying an individual subunit in the secondary structure, which explained the foundation of the mosaic-like structure of ITS. We evaluated the specificity of ITS in Streptococcus, and found that the specificity can be detected by a further analysis of a BLAST result. Then, we developed an identification procedure based on the ITS sequence. We verified the procedure by 500 ITS sequence. The accuracy rate of this procedure was 100% for Streptococcus at genus level, and 99.3% at species level. It suggested that ITS can be utilized to accurately identify Streptococcus at the species level. This work suggests that further exploration of ITS could be applied in other bacterial genera for identification and classification, which may be a useful topic for future microbiology studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen XC, Justesen US, Dargis R, Kemp M, Christensen JJ (2009) Identification of clinically relevant nonhemolytic Streptococci on the basis of sequence analysis of 16S–23S intergenic spacer region and partial gdh gene. J Clin Microbiol 47(4):932–939. https://doi.org/10.1128/JCM.01449-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Facklam R (2002) What happened to the Streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15(4):613–630. https://doi.org/10.1128/cmr.15.4.613-630.2002

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carratala J, Roson B, Fernandez-Sevilla A, Alcaide F, Gudiol F (1998) Bacteremic pneumonia in neutropenic patients with cancer: causes, empirical antibiotic therapy, and outcome. Arch Intern Med 158(8):868–872

    Article  CAS  Google Scholar 

  4. Moller K, Frederiksen EH, Wandall JH, Skinhoj P (1999) Meningitis caused by Streptococci other than Streptococcus pneumoniae: a retrospective clinical study. Scand J Infect Dis 31(4):375–381

    Article  CAS  Google Scholar 

  5. Miloudi M, Arsalane L, Nakhli R, EI Ghouat G, El Kamouni Y, Zouhair S (2019) Brain abscess caused by Streptococcus intermedius: a case report. Ann Biol Clin (Paris) 77(2):184–186. https://doi.org/10.1684/abc.2019.1421

    Article  Google Scholar 

  6. Brouwer MC, van de Beek D (2017) Epidemiology, diagnosis, and treatment of brain abscesses. Curr Opin Infect Dis 30(1):129–134. https://doi.org/10.1097/QCO.0000000000000334

    Article  PubMed  Google Scholar 

  7. Hsu RB, Lin FY (2006) Effect of penicillin resistance on presentation and outcome of nonenterococcal streptococcal infective endocarditis. Cardiology 105(4):234–239. https://doi.org/10.1159/000091821

    Article  CAS  PubMed  Google Scholar 

  8. Ercibengoa M, Goenaga MA, Ardanuy C, Grau I, Garcia-de-la-Maria C, Almela M, Miro JM, Navas E, Farinas MC, de Alegria CR, de la Torre J, Fernandez F, Marin M, Munoz P, Orden B, Oteo JA, Garcia-Alvarez L, de Alarcon A, Jimenez JAL, Marimon JM (2019) Epidemiological and clinical characteristics of Streptococcus tigurinus endocarditis. BMC Infect Dis 19(1):291. https://doi.org/10.1186/s12879-019-3914-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Han XY, Kamana M, Rolston KV (2006) Viridans Streptococci isolated by culture from blood of cancer patients: clinical and microbiologic analysis of 50 cases. J Clin Microbiol 44(1):160–165. https://doi.org/10.1128/JCM.44.1.160-165.2006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tunkel AR, Sepkowitz KA (2002) Infections caused by viridans Streptococci in patients with neutropenia. Clin Infect Dis 34(11):1524–1529. https://doi.org/10.1086/340402

    Article  PubMed  Google Scholar 

  11. Klein RS, Catalano MT, Edberg SC, Casey JI, Steigbigel NH (1979) Streptococcus bovis septicemia and carcinoma of the colon. Ann Intern Med 91(4):560–562. https://doi.org/10.7326/0003-4819-91-4-560

    Article  CAS  PubMed  Google Scholar 

  12. Kok H, Jureen R, Soon CY, Tey BH (2007) Colon cancer presenting as Streptococcus gallolyticus infective endocarditis. Singapore Med J 48(2):e43–45

    CAS  PubMed  Google Scholar 

  13. Klein RS, Recco RA, Catalano MT, Edberg SC, Casey JI, Steigbigel NH (1977) Association of Streptococcus bovis with carcinoma of the colon. N Engl J Med 297(15):800–802. https://doi.org/10.1056/NEJM197710132971503

    Article  CAS  PubMed  Google Scholar 

  14. Claridge JE III, Attorri S, Musher DM, Hebert J, Dunbar S (2001) Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus ("Streptococcus milleri group") are of different clinical importance and are not equally associated with abscess. Clin Infect Dis 32(10):1511–1515. https://doi.org/10.1086/320163

    Article  PubMed  Google Scholar 

  15. Jacobs JA, Pietersen HG, Stobberingh EE, Soeters PB (1995) Streptococcus anginosus, Streptococcus constellatus and Streptococcus intermedius. Clinical relevance, hemolytic and serologic characteristics. Am J Clin Pathol 104(5):547–553. https://doi.org/10.1093/ajcp/104.5.547

    Article  CAS  PubMed  Google Scholar 

  16. Catto BA, Jacobs MR, Shlaes DM (1987) Streptococcus mitis. A cause of serious infection in adults. Arch Intern Med 147(5):885–888

    Article  CAS  Google Scholar 

  17. Rasmussen LH, Hojholt K, Dargis R, Christensen JJ, Skovgaard O, Justesen US, Rosenvinge FS, Moser C, Lukjancenko O, Rasmussen S, Nielsen XC (2017) In silico assessment of virulence factors in strains of Streptococcus oralis and Streptococcus mitis isolated from patients with Infective Endocarditis. J Med Microbiol. https://doi.org/10.1099/jmm.0.000573

    Article  PubMed  Google Scholar 

  18. Sherman JM (1937) The Streptococci. Bacteriol Rev 1(1):3–97

    Article  CAS  Google Scholar 

  19. Chen CC, Teng LJ, Chang TC (2004) Identification of clinically relevant viridans group Streptococci by sequence analysis of the 16S–23S ribosomal DNA spacer region. J Clin Microbiol 42(6):2651–2657. https://doi.org/10.1128/JCM.42.6.2651-2657.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahmet Z, Warren M, Houang ET (1995) Species identification of members of the Streptococcus milleri group isolated from the vagina by ID 32 Strep system and differential phenotypic characteristics. J Clin Microbiol 33(6):1592–1595

    Article  CAS  Google Scholar 

  21. Flynn CE, Ruoff KL (1995) Identification of "Streptococcus milleri" group isolates to the species level with a commercially available rapid test system. J Clin Microbiol 33(10):2704–2706

    Article  CAS  Google Scholar 

  22. Woese CR (1987) Bacterial evolution. Microbiol Rev 51(2):221–271

    Article  CAS  Google Scholar 

  23. Garrity GM, Bell JA, Lilburn TG (2004) Taxonomic outline of the prokaryotes, bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York

    Google Scholar 

  24. Bentley RW, Leigh JA, Collins MD (1991) Intrageneric structure of Streptococcus based on comparative analysis of small-subunit rRNA sequences. Int J Syst Bacteriol 41(4):487–494. https://doi.org/10.1099/00207713-41-4-487

    Article  CAS  PubMed  Google Scholar 

  25. Jacobs JA, Schot CS, Schouls LM (2000) The Streptococcus anginosus species comprises five 16S rRNA ribogroups with different phenotypic characteristics and clinical relevance. Int J Syst Evol Microbiol 50(Pt 3):1073–1079. https://doi.org/10.1099/00207713-50-3-1073

    Article  CAS  PubMed  Google Scholar 

  26. Mora D, Ricci G, Guglielmetti S, Daffonchio D, Fortina MG (2003) 16S–23S rRNA intergenic spacer region sequence variation in Streptococcus thermophilus and related dairy Streptococci and development of a multiplex ITS-SSCP analysis for their identification. Microbiology 149(Pt 3):807–813. https://doi.org/10.1099/mic.0.25925-0

    Article  CAS  PubMed  Google Scholar 

  27. Maeda Y, Goldsmith CE, Coulter WA, Mason C, Dooley JS, Lowery CJ, Millar BC, Moore JE (2011) Comparasion of five gene loci (rnpB, 16S rRNA, 16S–23S rRNA, sodA and dnaJ) to aid the molecular identification of viridans-group Streptococci and pneumococci. Br J Biomed Sci 68(4):190–196

    Article  CAS  Google Scholar 

  28. Suffys PN, da Silva RA, de Oliveira M, Campos CE, Barreto AM, Portaels F, Rigouts L, Wouters G, Jannes G, van Reybroeck G, Mijs W, Vanderborght B (2001) Rapid identification of Mycobacteria to the species level using INNO-LiPA Mycobacteria, a reverse hybridization assay. J Clin Microbiol 39(12):4477–4482. https://doi.org/10.1128/JCM.39.12.4477-4482.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blaiotta G, Pepe O, Mauriello G, Villani F, Andolfi R, Moschetti G (2002) 16S–23S rDNA intergenic spacer region polymorphism of Lactococcus garvieae, Lactococcus raffinolactis and Lactococcus lactis as revealed by PCR and nucleotide sequence analysis. Syst Appl Microbiol 25(4):520–527. https://doi.org/10.1078/07232020260517652

    Article  CAS  PubMed  Google Scholar 

  30. Barsotti O, Decoret D, Renaud FN (2002) Identification of Streptococcus mitis group species by RFLP of the PCR-amplified 16S–23S rDNA intergenic spacer. Res Microbiol 153(10):687–691

    Article  CAS  Google Scholar 

  31. Yu J, Peng X, Wei Y, Mi Y, Zhu B, Zhou T, Yang Z, Liu Y (2018) Relationship of diversity and the secondary structure in 16S–23S rDNA internal transcribed spacer: a case in Vibrio parahaemolyticus. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fny177

    Article  PubMed  Google Scholar 

  32. Davies AP, Reid M, Hadfield SJ, Johnston S, Mikhail J, Harris LG, Jenkinson HF, Berry N, Lewis AM, El-Bouri K, Mack D (2012) Identification of clinical isolates of alpha-hemolytic Streptococci by 16S rRNA gene sequencing, matrix-assisted laser desorption ionization-time of flight mass spectrometry using MALDI Biotyper, and conventional phenotypic methods: a comparison. J Clin Microbiol 50(12):4087–4090. https://doi.org/10.1128/JCM.02387-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hassan AA, Vossen A, Lammler C, Siebert U, Fernandez-Garayzabal JF (2008) PCR amplification of species specific sequences of 16S rDNA and 16S–23S rDNA intergenic spacer region for identification of Streptococcus phocae. Microbiol Res 163(2):132–135. https://doi.org/10.1016/j.micres.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  34. Millar BC, Jiru X, Moore JE, Earle JA (2000) A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material. J Microbiol Method 42(2):139–147

    Article  CAS  Google Scholar 

  35. Osorio CR, Collins MD, Romalde JL, Toranzo AE (2005) Variation in 16S–23S rRNA intergenic spacer regions in Photobacterium damselae: a mosaic-like structure. Appl Environ Microbiol 71(2):636–645. https://doi.org/10.1128/AEM.71.2.636-645.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sadeghifard N, Gurtler V, Beer M, Seviour RJ (2006) The mosaic nature of intergenic 16S–23S rRNA spacer regions suggests rRNA operon copy number variation in Clostridium difficile strains. Appl Environ Microbiol 72(11):7311–7323. https://doi.org/10.1128/AEM.01179-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T (1995) Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 45(2):406–408. https://doi.org/10.1099/00207713-45-2-406

    Article  CAS  PubMed  Google Scholar 

  38. Konishi I, Hoshino T, Kondo Y, Saito K, Nishiguchi M, Sato K, Fujiwara T (2009) Phylogenetic analyses and detection of viridans Streptococci based on sequences and denaturing gradient gel electrophoresis of the rod shape-determining protein gene. J Oral Microbiol. https://doi.org/10.3402/jom.v1i0.2015

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suzuki N, Seki M, Nakano Y, Kiyoura Y, Maeno M, Yamashita Y (2005) Discrimination of Streptococcus pneumoniae from viridans group Streptococci by genomic subtractive hybridization. J Clin Microbiol 43(9):4528–4534. https://doi.org/10.1128/JCM.43.9.4528-4534.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park HK, Dang HT, Myung SC, Kim W (2012) Identification of a pheA gene associated with Streptococcus mitis by using suppression subtractive hybridization. Appl Environ Microbiol 78(8):3004–3009. https://doi.org/10.1128/AEM.07510-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2(2006):0007. https://doi.org/10.1038/msb4100049

    Article  PubMed  Google Scholar 

  42. Grim CJ, Hasan NA, Taviani E, Haley B, Chun J, Brettin TS, Bruce DC, Detter JC, Han CS, Chertkov O, Challacombe J, Huq A, Nair GB, Colwell RR (2010) Genome sequence of hybrid Vibrio cholerae O1 MJ1236, B33, and CIRS101 and comparative genomics with V. cholera. J Bacteriol 192(13):3524–3533. https://doi.org/10.1128/JB.00040-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a project from the National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201910055108) and by the Fundamental Research Funds for the Central Universities, Nankai University (No. 6391159).

Author information

Authors and Affiliations

Authors

Contributions

YL contributed to the study conception. All authors contributed to the study design. Material preparation, data collection, and analysis were performed by JY, TZ, and BZ. The first draft of the manuscript was written by JY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yin Liu.

Ethics declarations

Conflict of interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Zhou, T., Zhu, B. et al. Species-Specific Identification of Streptococcus based on DNA Marker in 16S–23S rDNA Internal Transcribed Spacer. Curr Microbiol 77, 1569–1579 (2020). https://doi.org/10.1007/s00284-020-01975-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01975-8

Navigation