Skip to main content
Log in

Involvement of Xyr1 and Are1 for Trichodermapepsin Gene Expression in Response to Cellulose and Galactose in Trichoderma reesei

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The secretome of Trichoderma reesei contains a mixture of cellulases, hemicellulases, amylases, proteases, and lipases that synergistically degrade plant biomass. Trichodermapepsin (TrAsP), the most prominent protease of T. reesei, affects the stability of cellulases. Similar to cellulase production, TrAsP production also depends on carbon and nitrogen sources. Unlike the cellulase mechanism, the regulatory mechanism of TrAsP remains unknown. Therefore, this study aimed to determine the effect of the main cellulase regulator Xyr1 and nitrogen regulator Are1 on trasp regulation. Cellulase inducer Avicel and TrAsP inducer galactose were used as carbon sources. qRT-PCR analysis revealed that Xyr1 and Are1 acted as a repressor and an activator for trasp expression, respectively. Compared to Avicel, relative expression was higher in galactose. The binding motifs of Xyr1 and Are1 were located in upstream of the trasp promoter. From promoter deletant analysis using the β-glucuronidase reporter gene, the area from − 870 bp to − 670 bp was identified as the only region for positive regulation and there were both binding motifs of Xyr1 and Are1. Reporter assay of mutants confirmed functions of downregulation of Xyr1 and upregulation of Are1. Electrophoretic mobility shift assay demonstrated the binding ability of Xyr1 and Are1 to the particular binding motifs and their functionality was confirmed. Further, this study demonstrated that Cre1, Xpp1, and Pac1 downregulate trasp expression similar to that in cellulase regulation mechanism. These results demonstrate that transcriptional regulators of cellulase control trasp expression and suggest the possibility of the existence of specific protease regulators in T. reesei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: An update. Curr Opin Biotechnol 14:438–443. https://doi.org/10.1016/S0958-1669(03)00099-5

    Article  CAS  PubMed  Google Scholar 

  2. Martinez D, Berka RM, Henrissat B et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina ). Nat Biotechnol 26:553–560. https://doi.org/10.1038/nbt1403

    Article  CAS  PubMed  Google Scholar 

  3. Eneyskaya EV, Kulminskaya AA, Shabalin KA et al (1999) Acid protease from Trichoderma reesei: Limited proteolysis of fungal carbohydrases. Appl Microbiol Biotechnol 52:226–231. https://doi.org/10.1007/s002530051513

    Article  CAS  Google Scholar 

  4. Hagspiel K, Haab D, Kubicek C (1989) Protease activity and proteolytic modification of cellulases from a Trichoderma reesei QM 9414 selectant. Appl Microbiol Biotechnol 32:61–67. https://doi.org/10.1007/BF00164824

    Article  CAS  Google Scholar 

  5. Daranagama DN, Koki S, Masahiro Y et al (2019) Proteolytic analysis of Trichoderma reesei in celluase - inducing condition reveals a role for trichodermapepsin ( TrAsP ) in cellulase production. J Ind Microbiol Biotechnol 46:831–842. https://doi.org/10.1007/s10295-019-02155-9

    Article  CAS  PubMed  Google Scholar 

  6. Foreman PK, Brown D, Dankmeyer L et al (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997. https://doi.org/10.1074/jbc.M304750200

    Article  PubMed  Google Scholar 

  7. Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL (2006) Xyr1 (Xylanase Regulator 1) regulates both the hydrolytic enzyme system and d-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5:2128–2137. https://doi.org/10.1128/EC.00211-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aro N, Saloheimo A, Ilmé M, Penttilä M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314. https://doi.org/10.1074/jbc.M003624200

    Article  CAS  PubMed  Google Scholar 

  9. Häkkinen M, Valkonen MJ, Westerholm-Parvinen A et al (2014) Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 7:14. https://doi.org/10.1186/1754-6834-7-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aro N, Ilmén M, Saloheimo A, Penttilä M (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69:56–65. https://doi.org/10.1128/AEM.69.1.56-65.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Derntl C, Rassinger A, Srebotnik E et al (2015) Xpp1 regulates the expression of xylanases, but not of cellulases in Trichoderma reesei. Biotechnol Biofuels 8:112. https://doi.org/10.1186/s13068-015-0298-8

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nitta M, Furukawa T, Shida Y et al (2012) A new Zn(II)2Cys6-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 49:388–397. https://doi.org/10.1016/j.fgb.2012.02.009

    Article  CAS  PubMed  Google Scholar 

  13. Portnoy T, Margeot A, Linke R et al (2011) The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12:269. https://doi.org/10.1186/1471-2164-12-269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Furukawa T, Shida Y, Kitagami N et al (2009) Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 46:564–574. https://doi.org/10.1016/j.fgb.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  15. Klaubauf S, Narang HM, Post H et al (2014) Similar is not the same: Differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi. Fungal Genet Biol 72:73–81. https://doi.org/10.1016/j.fgb.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  16. Rauscher R, Wurleitner E, Wacenovsky C et al (2006) Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell 5:447–456. https://doi.org/10.1128/EC.5.3.447-456.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma L, Chen L, Zhang L et al (2016) RNA Sequencing reveals Xyr1 as a transcription factor regulating gene expression beyond carbohydrate metabolism. Biomed Res Int 2016:4841756. https://doi.org/10.1155/2016/4841756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Callow NV, Ray CS, Kelbly MA, Ju L-K (2016) Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzyme Microb Technol 82:8–14. https://doi.org/10.1016/J.ENZMICTEC.2015.08.012

    Article  CAS  PubMed  Google Scholar 

  19. Lockington RA, Rodbourn L, Barnett S et al (2002) Regulation by carbon and nitrogen sources of a family of cellulases in Aspergillus nidulans. Fungal Genet Biol 37:190–196. https://doi.org/10.1016/S1087-1845(02)00504-2

    Article  CAS  PubMed  Google Scholar 

  20. Qian Y, Sun Y, Zhong L et al (2019) The GATA-type transcriptional factor Are1 modulates the expression of extracellular proteases and cellulases in Trichoderma reesei. Int J Mol Sci 20:4100. https://doi.org/10.3390/ijms20174100

    Article  CAS  PubMed Central  Google Scholar 

  21. Ravagnani A, Gorfinkiel L, Langdon T et al (1997) Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J 16:3974–3986. https://doi.org/10.1093/emboj/16.13.3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilson RA, Arst HN (1998) Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” GATA family of transcription factors. Microbiol Mol Biol Rev 62:586–596

    Article  CAS  Google Scholar 

  23. Suárez MB, Sanz L, Chamorro MI et al (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum: identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934. https://doi.org/10.1016/J.FGB.2005.08.002

    Article  PubMed  Google Scholar 

  24. Christensen T, Hynes MJ, Davis MA (1998) Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl Environ Microbiol 64:3232–3237

    Article  CAS  Google Scholar 

  25. Bugeja HE, Hynes MJ, Andrianopoulos A (2012) AreA controls nitrogen source utilisation during both growth programs of the dimorphic fungus Penicillium marneffei. Fungal Biol 116:145–154. https://doi.org/10.1016/j.funbio.2011.10.009

    Article  CAS  PubMed  Google Scholar 

  26. Dunkel N, Biswas K, Hiller E et al (2014) Control of morphogenesis, protease secretion and gene expression in candida albicans by the preferred nitrogen source ammonium. Microbiology 160:1599–1608. https://doi.org/10.1099/mic.0.078238-0

    Article  CAS  PubMed  Google Scholar 

  27. Hirasawa H, Shioya K, Mori K et al (2019) Cellulase productivity of Trichoderma reesei mutants developed in Japan varies with varying pH conditions. J Biosci Bioeng 128:264–273. https://doi.org/10.1016/j.jbiosc.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  28. Shida Y, Yamaguchi K, Nitta M et al (2015) The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnol Biofuels 8:230. https://doi.org/10.1186/s13068-015-0420-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mach-Aigner AR, Pucher ME, Steiger MG et al (2008) Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 74:6554–6562. https://doi.org/10.1128/AEM.01143-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ogasawara W, Shida Y, Furukawa T et al (2006) Cloning, functional expression and promoter analysis of xylanase III gene from Trichoderma reesei. Appl Microbiol Biotechnol 72:995–1003. https://doi.org/10.1007/s00253-006-0365-y

    Article  CAS  PubMed  Google Scholar 

  31. Shida Y, Furukawa T, Ogasawara W et al (2008) Functional analysis of the egl3 upstream region in filamentous fungus Trichoderma reesei. Appl Microbiol Biotechnol 78:515–524. https://doi.org/10.1007/s00253-007-1338-5

    Article  CAS  PubMed  Google Scholar 

  32. Penttila M, Nevalainen H, Ratto M et al (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164. https://doi.org/10.1016/0378-1119(87)90110-7

    Article  CAS  PubMed  Google Scholar 

  33. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report 5:387–405. https://doi.org/10.1007/BF02667740

    Article  CAS  Google Scholar 

  34. Furukawa T, Shida Y, Kitagami N et al (2008) Identification of the cis-acting elements involved in regulation of xylanase III gene expression in Trichoderma reesei PC-3-7. Fungal Genet Biol 45:1094–1102. https://doi.org/10.1016/j.fgb.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  35. Deeba F, Sultana T, Mahmood T et al (2017) Involvement of WRKY, MYB and DOF DNA-binding proteins in interaction with a rice germin-like protein gene promoter. Acta Physiol Plant 39:1–10. https://doi.org/10.1007/s11738-017-2488-4

    Article  CAS  Google Scholar 

  36. Muro-Pastor M, Gonzalez R, Strauss J et al (2017) The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter. EMBO J 18:1–14. https://doi.org/10.1093/emboj/18.6.1584

    Article  Google Scholar 

  37. Shida Y, Furukawa T, Ogasawara W (2016) Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Biosci Biotechnol Biochem 8451:1347–6947. https://doi.org/10.1080/09168451.2016.1171701

    Article  CAS  Google Scholar 

  38. Snyman C, Theron L, Divol B (2019) Understanding the regulation of extracellular protease gene expression in fungi: a key step towards their biotechnological applications. Appl Microbiol Biotechnol 103:5517–5532. https://doi.org/10.1007/s00253-019-09902-z

    Article  CAS  PubMed  Google Scholar 

  39. Katz ME, Gray KA, Cheetham BF (2006) The Aspergillus nidulans xprG (phoG) gene encodes a putative transcriptional activator involved in the response to nutrient limitation. Fungal Genet Biol 43:190–199. https://doi.org/10.1016/j.fgb.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  40. Landowski CP, Huuskonen A, Wahl R et al (2015) Enabling low cost biopharmaceuticals: a systematic approach to delete proteases from a well-known protein production host trichoderma reesei. PLoS ONE 10:1–28. https://doi.org/10.1371/journal.pone.0134723

    Article  CAS  Google Scholar 

  41. dos Santos CL, de Paula RG, Antoniêto ACC et al (2016) Understanding the role of the master regulator XYR1 in Trichoderma reesei by global transcriptional analysis. Front Microbiol 7:1–16. https://doi.org/10.3389/fmicb.2016.00175

    Article  Google Scholar 

  42. Stricker AR, Trefflinger P, Aro N et al (2008) Role of Ace2 (Activator of Cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genet Biol 45:436–445. https://doi.org/10.1016/j.fgb.2007.08.005

    Article  CAS  PubMed  Google Scholar 

  43. Punt PJ, Schuren FHJ, Lehmbeck J et al (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45:1591–1599. https://doi.org/10.1016/j.fgb.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  44. Katz ME, Bernardo SM, Cheetham BF (2008) The interaction of induction, repression and starvation in the regulation of extracellular proteases in Aspergillus nidulans: evidence for a role for CreA in the response to carbon starvation. Curr Genet 54:47–55. https://doi.org/10.1007/s00294-008-0198-6

    Article  CAS  PubMed  Google Scholar 

  45. Kredics L, Antal Z, Szekeres A et al (2005) Extracellular proteases of Trichoderma Species. Acta Microbiol Immunol Hung 52:169–184. https://doi.org/10.1556/AMicr.52.2005.2.3

    Article  CAS  PubMed  Google Scholar 

  46. Delgado-Jarana J, Rincón AM, Benítez T (2002) Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology 148:1305–1315. https://doi.org/10.1099/00221287-148-5-1305

    Article  CAS  PubMed  Google Scholar 

  47. Poussereau N, Creton S, Billon-Grand G et al (2001) Regulation of acp1, encoding a non-aspartyl acid protease expressed during pathogenesis of Sclerotinia sclerotiorum. Microbiology 147:717–726. https://doi.org/10.1099/00221287-147-3-717

    Article  CAS  PubMed  Google Scholar 

  48. Li N, Kunitake E, Endo Y et al (2016) Involvement of an SRF-MADS protein McmA in regulation of extracellular enzyme production and asexual/sexual development in Aspergillus nidulans. Biosci Biotechnol Biochem 80:1820–1828. https://doi.org/10.1080/09168451.2016.1146074

    Article  CAS  PubMed  Google Scholar 

  49. Kwon NJ, Garzia A, Espeso EA et al (2010) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77:1203–1219. https://doi.org/10.1111/j.1365-2958.2010.07282.x

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka M, Yoshimura M, Ogawa M et al (2016) The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture. Appl Microbiol Biotechnol 100:5859–5868. https://doi.org/10.1007/s00253-016-7419-6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was supported by New Energy and Industrial Technology Development Organization (Grant No. P16009).

Author information

Authors and Affiliations

Authors

Contributions

NDD, YoSh and WO conceived the study. WO designed the promoter analysis experiment; YoSh designed the experiment of site mutagenesis and EMSA experiment. YoSu designed activity analysis. NDD designed the experiment of qRT-PCR, carried out the experiments, interpreted results and drafted the manuscript. YoSh, YoSu and WO were involved in data analysis and in the review and critical editing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wataru Ogasawara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daranagama, N.D., Suzuki, Y., Shida, Y. et al. Involvement of Xyr1 and Are1 for Trichodermapepsin Gene Expression in Response to Cellulose and Galactose in Trichoderma reesei. Curr Microbiol 77, 1506–1517 (2020). https://doi.org/10.1007/s00284-020-01955-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01955-y

Navigation