Skip to main content
Log in

Microbial (Enzymatic) Degradation of Cyanide to Produce Pterins as Cofactors

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Cyanide is one of the most poisonous substances in the environment, which may have originated from natural and anthropogenic sources. There are many enzymes produced by microorganisms which can degrade and utilize cyanide. The major byproducts of cyanide degradation are alanine, glutamic acid, alpha-amino-butyric acid, beta-cyanoalanine, pterin etc. These products have many pharmaceutical and medicinal applications. For the degradation of cyanide, microbes produce necessary cofactors which catalyze the degradation pathways. Pterin is one of the cofactors for cyanide degradation. There are many pathways involved for the degradation of cyanide, cyanate, and thiocyanate. Some of the microorganisms possess resistance to cyanide, since they have developed adaptive alternative pathways for the production of ATP by utilization of cyanide as carbon and nitrogen sources. In this review, we summarized different enzymes, their mechanisms, and corresponding pathways for the degradation of cyanide and production of pterins during cyanide degradation. We aim to enlighten different types of pterin, its classification, and biological significance through this literature review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Knowles CJ, Bunch AW (1986) Microbial cyanide metabolism. Adv Microb Physiol 27:73–111

    CAS  PubMed  Google Scholar 

  2. Mudder T, Chadwick J (2001) The cyanide guide special issue of mining environmental management. Min J Ltd 9:45 (ISSN 0969–4218)

    Google Scholar 

  3. Zajtchuk R, Bellamy (1997) Medical aspects of chemical and biologic warfare, textbook of military medicine. Borden Institute, Washington

    Google Scholar 

  4. Gurbuz F, Ciftci H, Akcil A, Karahan AG (2004) Microbial detoxification of cyanide solutions: a new biotechnological approach using algae. Hydrometallurgy 72:167–176. https://doi.org/10.1016/j.hydromet.2003.10.004

    Article  CAS  Google Scholar 

  5. Fairbrother L, Shapter J, Brugger J, Southam G, Pring A, Reith F (2009) Effect of the cyanide-producing bacterium Chromobacterium violaceum on ultraflat Au surfaces. Chem Geol 265:313–320. https://doi.org/10.1016/j.chemgeo.2009.04.010

    Article  CAS  Google Scholar 

  6. Gurbuza F, Ciftci H, Akcilb A (2009) Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J Hazard Mater 162:74–79. https://doi.org/10.1016/j.jhazmat.2008.05.008

    Article  CAS  Google Scholar 

  7. Barclay M, Hart A, Knowles CJ, Meeussen JCL, Tett VA (1998) Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enzyme Microb Technol 22:223–231

    CAS  Google Scholar 

  8. Barclay M, Tett VA, Knowles CJ (1998) Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions. Enzyme Microb Technol 23:321–330

    CAS  Google Scholar 

  9. Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme Microb Technol 36:849–854

    CAS  Google Scholar 

  10. Huertas MJ, Saez LP, Roldan MD, Luque-Almagro VM, Martı´nez-Luque M, Blasco R, Castillo F, Moreno-Vivian C, Garcı´a-Garcı´a I (2010) Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. J Hazard Mater 179:72–78. https://doi.org/10.1016/j.jhazmat.2010.02.059

    Article  CAS  PubMed  Google Scholar 

  11. Kunz DA, Nagappan O, Silva-Avalos J, Delong GT (1992) Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion. Appl Environ Microbiol 58:2022–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ozel YK, Gedikli S, Aytar P, Unal A, Yamac M, Cabuk A, Kolankaya N (2010) New fungal biomasses for cyanide biodegradation. J Biosci Bioeng 110(4):431–435. https://doi.org/10.1016/j.jbiosc.2010.04.011

    Article  CAS  PubMed  Google Scholar 

  13. Park D, Lee DS, Kim YM (2008) Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility. Bioresour Technol 99:2092–2096. https://doi.org/10.1016/j.biortech.2007.03.027

    Article  CAS  PubMed  Google Scholar 

  14. Luque-Almagro VM, Huertas MJ, Martı´nez-Luque M, Moreno-Vivian C, Roldan D, Garcı´a Gil LJ, Castillo F, Blasco R (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947. https://doi.org/10.1128/AEM.71.2.940-947.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tiong B, Bahari ZM, Lee NS, Jaafar J, Ibrahim Z, Shahir S (2015) Cyanide degradation by pseudomonas pseudoalcaligenes strain W2 isolated from mining effluent. Sains Malays 44(2):233–238

    Google Scholar 

  16. Moradkhani M, Yaghmaei S, Nejad ZG (2018) Biodegradation of cyanide under alkaline conditions by a strain of Pseudomonas putida isolated from gold mine soil and optimization of process variables through response surface methodology (RSM). Period Polytech Chem Eng 62:265–273

    CAS  Google Scholar 

  17. Dorr PK, Knowles CJ (1989) Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764. FEMS Microbiol Lett 60:289–294. https://doi.org/10.1111/j.1574-6968.1989.tb03488.x

    Article  CAS  Google Scholar 

  18. Harris R, Knowles CJ (1983) Isolation and growth of pseudomonas species that utilizes cyanide as source of nitrogen. J Gen Microbiol 129:1005–1011

    CAS  PubMed  Google Scholar 

  19. Chatpawala KD, Babu GRV, Vijaya OK, Kumar KP, Wolfram JH (1998) Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida. J Ind Microbiol Biotechnol 20:28–33. https://doi.org/10.1038/sj.jim.2900469

    Article  CAS  Google Scholar 

  20. Avcioglu NH, Bilkay IS (2016) Biological treatment of cyanide by using Klebsiella pneumonia species. Food technol Biotechnol 54:450–454. https://doi.org/10.17113/ftb.54.04.16.45188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chaudhari AU, Kodam KM (2010) Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp. Appl Microbiol Biotechnol 85:1167–1174. https://doi.org/10.1007/s00253-009-2299-7

    Article  CAS  PubMed  Google Scholar 

  22. Kao CM, Liu JK, Lou HR, Lin CS, Chen SC (2003) Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50:1055–1061

    CAS  PubMed  Google Scholar 

  23. Adjei MD, Ohta Y (2000) Factors affecting the biodegradation of cyanide by Burkholderia cepacia C-3. J Biosci Bioeng 89:274–277. https://doi.org/10.1016/S1389-1723(00)88833-7

    Article  CAS  PubMed  Google Scholar 

  24. Potivichayanon S, Kitleartpornpairoat R (2010) Biodegradation of cyanide by a novel cyanide-degrading bacterium. World Acad Sci Eng Technol 42:1362–1365

    Google Scholar 

  25. Macadam AM, Knowles CJ (1984) Purification and properties of β-cyano alanine synthase from the cyanide-producing bacterium. Chromobacterium Violaceum Biochim Biophys Acta 786:123–132. https://doi.org/10.1016/0167-4838(84)90081-5

    Article  CAS  Google Scholar 

  26. Fry WE, Millar RL (1972) Cyanide degradation by an enzyme from Stemphylium loti. Arch Biochem Biophys 151:468–474

    CAS  PubMed  Google Scholar 

  27. Luque-Almagro VM, Moreno-Vivián C, Roldán MD (2016) Biodegradation of cyanide wastes from mining and jewellery industries. Curr Opin Biotechnol 38:9–13. https://doi.org/10.1016/j.copbio.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  28. Murugesan T, Durairaj N, Ramasamy M, Jayaraman K, Palaniswamy M, Jayaraman A (2017) Analeptic agent from microbes upon cyanide degradation. Appl Microbiol Biotechnol 102(4):1557–1565

    PubMed  Google Scholar 

  29. Adjei MD, Ohta Y (1999) Isolation and characterization of a cyanide utilizing Burkholderia cepacia strain. World J Microbiol Biotechnol 15:699–704

    CAS  Google Scholar 

  30. Sexton AC, Howlett BJ (2000) Charcterisation of cyanide hydratase gene in the phytopathogeneic fungus leptosphaeria maculans. Mol Gen Genet 263:463–470

    CAS  PubMed  Google Scholar 

  31. Yanase H, Sakamoto A, Okamoto K, Kita K, Sato Y (2000) Degradation of the metal cyano complex tetracyanonickelate (II) by Fusarium oxysporum N-10. Appl Microbiol Biotechnol 53:328–334. https://doi.org/10.1007/s002530050029

    Article  CAS  PubMed  Google Scholar 

  32. Baxter J, Cummings SP (2006) The current and future applications of microoorganism in the bioremediation of cyanide contamination. Antonie Van Leeuwenhoek 90:1–17. https://doi.org/10.1007/s10482-006-9057-y

    Article  CAS  PubMed  Google Scholar 

  33. Urbanska A, Leszczynshi B, Matok H, Dixon AFG (2002) Cyanide detoxifying enzymes of bird cherry oat aphid. Electron J Pol Agric Univ. 5

  34. Raybuck SA (1992) Microbes and microbial enzymes for cyanide degradation. Biodegradation 3:3–18

    CAS  PubMed  Google Scholar 

  35. Aronstein BN, Maka A, Srivastava VJ (1994) Chemical and biological removal of cyanides from aqueous and soil-containing systems. Appl Microbiol Biotechnol 41:700–707

    CAS  Google Scholar 

  36. Gupta N, Balomajumder C, Agarwal VK (2010) Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176:1–13. https://doi.org/10.1016/j.jhazmat.2009.11.038

    Article  CAS  PubMed  Google Scholar 

  37. Cabuk A, Taspinar A, Kolankaya UN (2006) Biodegration of cyanide by white rot fungus, Trametes versicolour. Biotechnol Lett 28:1313–1317

    CAS  PubMed  Google Scholar 

  38. Angayarkanni J, Thandeeswaran M, Nisshanthini D, Karunya J, Palaniswamy M (2016) Prodigious action of microbes on poisonous ravage waste degradation. ENVIS News lett 14(1)

  39. Tausigg A (1965) Some properties of induced enzyme cyanase. Can J Biochem 43:1063–1069

    Google Scholar 

  40. Castric PA, Strobel GA (1969) Cyanide metabolism by Bacillus megaterium. J Biol Chem 244:4089–4094

    CAS  PubMed  Google Scholar 

  41. Dunnil PM, Fowden L (1965) Enzymatic formation of β-Cyanoalanine from cyanide by E-Coli extracts. Nature 208:1206–1207

    Google Scholar 

  42. Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8 a resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    CAS  PubMed  Google Scholar 

  43. Chena SC, Liu JK (1999) The respiratory responses to cyanide of a cyanide-resistant Klebsiella oxytoca bacterial strain. FEMS Microbiol Lett 175(1):37–43

    CAS  PubMed  Google Scholar 

  44. Jensen P, Wilson MT, Aasa R, Malmström BG (1984) Cyanide inhibition of cytochrome c oxidase. A rapid-freeze epr investigation. Biochem J 224(3):829–837

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wagner AM, Krab K (1995) The alternative respiration pathway in plants: role and regulation. Physiol Plant 95:318–325. https://doi.org/10.1111/j.1399-3054.1995.tb00844.x

    Article  CAS  Google Scholar 

  46. Siedow JN, Umbach AL (1995) Plant mitochondrial electron transfer and molecular biology. Plant Cell 7:821–831. https://doi.org/10.1105/tpc.7.7.821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Figueiredo H, Neves IC, Quintelas C, Tavares T, Taralung M, Mijoin J, Magnoux P (2006) Oxidation catalysts prepared from biosorbents supported on zeolites. Appl Catal B 66:274–280

    CAS  Google Scholar 

  48. Huertas MJ, Luque-Almagro VM, Martínez-Luque M, Blasco R, Moreno-Vivián C, Castillo F, Roldán MD (2006) Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochem Soc Trans 34:152–155

    CAS  PubMed  Google Scholar 

  49. Kunz DA, Fernandez R, Parab P (2001) Evidence that bacterial cyanide oxygenase is a pterin dependenthydroxylase. Biochem Biophys Res Commun 281:514–518. https://doi.org/10.1006/bbrc.2001.5611

    Article  CAS  Google Scholar 

  50. Fernandez RF, Dolghih E, Kunz DA (2004) Enzymatic assimilation of cyanide via pterin dependent oxygenolytic cleavage to ammonia and formate in Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 70:121–128. https://doi.org/10.1128/aem.70.1.121-128.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Durairaju Nisshanthini S, Teresa AK, Infanta SD, Raja S, Natarajan K, Palaniswamy M, Angayarkanni J (2014) Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis—JN989651. J Microbiol 53:262–271. https://doi.org/10.1007/s12275-015-4138-0

    Article  CAS  Google Scholar 

  52. Mahendran R, Thandeeswaran M, Kiran G, Arulkumar M, Nawaz A, Jabastin J, Janani B, Thomas TA, Angayarkanni J (2018) Evaluation of pterin, a promising drug candidate from cyanide degrading bacteria. Curr Microbiol 75:684–693. https://doi.org/10.1007/s00284-018-1433-0

    Article  CAS  PubMed  Google Scholar 

  53. Kompis IM, Islam K, Then RL (2005) DNA and RNA synthesis: antifolates. Chem Rev 105:593–620. https://doi.org/10.1021/cr0301144

    Article  CAS  PubMed  Google Scholar 

  54. Ziegler SH, Harmsen R (1969) The biology of pteridine in insects. Adv Insect Physiol 6:139–203

    CAS  Google Scholar 

  55. Forrest HS, Van Baalen C (1970) Microbiology of unconjugated pteridines. Annu Rev Microbiol 24:91–108

    CAS  PubMed  Google Scholar 

  56. Pimkov IV, Nigam A, Venna K, Fleming FF, Solntsev PV, Nemykin VN, Basu PJ (2013) Dithiolopyranthione synthesis, spectroscopy, and an unusual reactivity with DDQ. Heterocycl Chem 50:879–886

    CAS  Google Scholar 

  57. Dorsett D, Yim JJ, Jacobson KB (1979) Biosynthesis of “drosopterins” by an enzyme system from Drosophila melanogaster. Biochemistry 18:2596–2600. https://doi.org/10.1021/bi00579a025

    Article  CAS  PubMed  Google Scholar 

  58. Kritsky MS, Lyudnikova TA, Mironov EA, Moskaleva IVJ (1997) The UV radiation-driven reduction of pterins in aqueous solution. Photochem Photobiol B Biol 39:43–48. https://doi.org/10.1016/s1011-1344(96)07451-9

    Article  CAS  Google Scholar 

  59. Thomas AH, Lorente C, Capparelli AL, Pokhhrel MR, Braun AM, Oliveros E (2002) Fluorescence of pterin 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects. Photochem Photobiol Sci 1:421–426. https://doi.org/10.1039/b202114e

    Article  CAS  PubMed  Google Scholar 

  60. Raemakers-Franken PC, Vanelderen CHM, Vanderdrift C, Vogels GD (1991) Identification of a novel tatiopterin derivative in methanogenium tationis. Bio-factors 3:127–130

    CAS  Google Scholar 

  61. Shanmuganathan MV, Krishnan S, Fu X, Prasadarao NV (2014) Escherichia coli K1 induces pterin production for enhanced expression of Fcg receptor I to invade RAW 264.7 macrophages. Microbes Infect 16:134–141. https://doi.org/10.1016/j.micinf.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  62. Ikawa M, Sasner JJ, Haney JF, Foxall TL (1995) Pterins of the cyanobacterium Aphanizomenon flos-aquae. Phytochemistry 38(5):1229–1232

    CAS  Google Scholar 

  63. Cho SH, Na JU, Youn H, Hwang CS, Lee CH, Kang SO (1998) Tepidopterin, 1-O-(L-threo-biopterin-2′-yl)-β-N-acetylglucosamine from Chlorobium tepidum. Biochim Biophys Acta (BBA) Gen Subj 1379:53–60. https://doi.org/10.1016/s0304-4165(97)00081-0copbio.2015.12.004

    Article  CAS  Google Scholar 

  64. Klein R, Thiery R, Tatischeff I (1990) Dictyopterin, 6-(d-threo-1, 2-dihydroxypropyl)-pterin, a new natural isomer of l-biopterin: isolation from vegetative cells of Dictyostelium discoideum and identification. Eur J Biochem 187:665–669. https://doi.org/10.1111/j.1432-1033.1990.tb15351

    Article  CAS  PubMed  Google Scholar 

  65. Basu P, Burgmayer SJ (2011) Pterin chemistry and its relationship to the molybdenum cofactor. NIH Public access 255:1016–1038. https://doi.org/10.1016/j.ccr.2011.02.010

    Article  CAS  Google Scholar 

  66. Werner-Felmayer G, Golderer G, Werner ER (2002) Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. Curr Drug Metab 3:159–173. https://doi.org/10.2174/1389200024605073

    Article  CAS  PubMed  Google Scholar 

  67. Cronin SJ, Seehus C, Weidinger A, Talbot S, Reissig S, Seifert M, Kreslavsky T (2018) The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature. https://doi.org/10.1038/s41586-018-0701-2

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schwarz G (2005) Molybenum cofactor biosynthesis and deficiency. Cell Mol Life Sci 62:2792–2810

    CAS  PubMed  Google Scholar 

  69. Hausen A, Bichler A, Fuchs D, Hetzel H, Reibnegger G, Watcher H (1985) Neopterin, a biochemical indicator of cellular immune reactions, in the detection and control of patients with neoplastic diseases. Cancer Detect Prev 8:121–128

    CAS  PubMed  Google Scholar 

  70. Jackman AL, Taylor GA, O Connor BM, Bishop JA, Moran RG, Calvert AH (1990) Activity of the thymidylate synthase inhibitor 2-Desamino-N10-propargyl-5,8-dideazafolic acid and related compounds in murine (L1210) and human (W1L2) systems in Vitro and in L1210 in vivo. Cancer Res 50:5212–5218

    CAS  PubMed  Google Scholar 

  71. Marques SM, Petushkov VN, Rodionova NS, Da Silva JC (2011) LC–MS and microscale NMR analysis of luciferin-related compounds from the bioluminescent earthworm Fridericia heliota. J Photochem Photobiol B 102:218–223. https://doi.org/10.1016/j.jphotobiol.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  72. Hoffmann G, Schobersberger W (2004) Neopterin: a mediator of the cellular immune system. Pteridines 15:107–112

    CAS  Google Scholar 

  73. Wirleitner B, Schroecksnadel K, Winkler CH, Fuchs D (2005) Neopterin in HIV-1 infection. Mol Immun 42:183–194. https://doi.org/10.1016/j.molimm.2004.06.017

    Article  CAS  Google Scholar 

  74. Gomtsyan A, Lee CH (2004) Nonnucleoside inhibitors of adenosine kinase. Curr Pharm Des 10:1093–1103. https://doi.org/10.2174/1381612043452703

    Article  CAS  PubMed  Google Scholar 

  75. Korkuryo Y, Nakatani T, Kakinuma M, Kabaki M, Kawata K, Kugimiya A (2000) New γ-fluoromethotrexates modified in the pteridine ring:synthesis and in vitro immunosuppressive activity. Eur J Med Chem 35:529–534

    Google Scholar 

  76. Shen C, Dillisen E, Kasran A, Lin Y, Herman J, Sienaert I, Jongheb S, Kerremans L, Geboes K, Boon L, Rutgeerts P, Ceuppens JL (2007) Immunosuppressive activity of a new pteridine derivative (4AZA1378) alleviates severity of TNBS—induced colitis in mice. Clin Immunol 122:53–61

    CAS  PubMed  Google Scholar 

  77. Levenberg B, Hayaishi O (1959) A bacterial pterin deaminase. J Biol Chem 234:955–961

    CAS  PubMed  Google Scholar 

  78. Peter JM, van Haaster T, Theo MK (1982) Signal transduction in the cellular slime molds. Mol Cell Endocrinol 26:1–17

    Google Scholar 

  79. Wernerfelmayer G, Golderer G, Werner ER, Grobner P, Wachter H (1994) Pteridine biosynthesis and nitric-oxide synthase in physarum-polycephalum. Biochem J 304:105–111

    CAS  Google Scholar 

  80. Goswami S, Maity AC, Fun H (2007) One-step synthesis of lumazine and xanthine: first co-crystal of lumazine and perchloric acid with a unique monohydrated hydronium ion (H5O2 +) mediated supramolecular assembly of the lumazine dimer. Eur J Org Chem. https://doi.org/10.1002/ejoc.200700271

    Article  Google Scholar 

  81. Ziegler I, Mc Donald T, Hesslinger C, Pelletier I, Boyle P (2000) Development of the pteridine pathway in the Zebrafish Danio rerio. J Biochem 275:18926–18932. https://doi.org/10.1074/jbc.M910307199

    Article  CAS  Google Scholar 

  82. Dumestre A, Chone T, Portal J, Gerard M, Berthelin J (1997) Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils. Appl Environ Microbiol 63:2729–2734

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Katayama Y, Narahara Y, Inoue Y, Amano F, Kanagawa T, Kuraishi H (1992) A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J Biol Chem 267:9170–9175

    CAS  PubMed  Google Scholar 

  84. Ingvorsen K, Hajar-Pedersen B, Gotfredsen SE (1991) Novel cyanide hydrolysing enzyme from Alcaligenes xylosoxidans subsp denitrificans. Appl Environ Microbiol 57:1783–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Watanabe A, Yano K, Ikebukuro K, Karube I (1998) Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase. Microbiology 144(6):1677–1682

    CAS  PubMed  Google Scholar 

  86. Cipollone R, Ascenzi P, Tomao P, Imperi F, Visca P (2008) Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese. J Mol Microbiol Biotechnol 15(2–3):199–211

    CAS  PubMed  Google Scholar 

  87. Wang P, Vanettan HD (1992) cloning and properties of a cyanide hydratase gene from the phytopathogenic fungus Gloeocercospora sorghi. Biochem Biophys Res Commun 187:1048–1052

    CAS  PubMed  Google Scholar 

  88. Atkinson A, Evans CGT, Yeo RG (1975) Behaviour of Bacillus stearothermophilus grown in different media. J Appl Bacteriol 38:301–303

    CAS  PubMed  Google Scholar 

  89. Babu GRV, Wolfram JH, Chapatwala KD (1992) Conversion of sodium cyanide to carbon dioxide and ammonia by immobilised cells of Pseudomonas putida. J Ind Microbiol 9:235–238

    CAS  Google Scholar 

  90. Suh Y, Park JM, Yang J (1994) Biodegradation of cyanide compounds by Pseudomonas fluorescens immobilized on zeolite. Enzyme Microb Technol 16:529–533

    CAS  Google Scholar 

  91. Shivaraman N, Parhad NM (1985) Biodegradation of cyanide by Pseudomonas acidovorans and influence of pH and phenol. Indian J Environ Health 27:1–8

    CAS  Google Scholar 

  92. White DM, Schnabel W (1998) Treatment of cyanide waste in a sequencing batch biofilm reactor. Water Res 32:254–257

    CAS  Google Scholar 

  93. Kaewkannetra P, Imai T, Garcia GFJ, Chiu TY (2009) Cyanide removal from cassava mill wastewater using Azotobacter vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system. J Hazard Mater 172:224–228. https://doi.org/10.1016/j.jhazmat.2009.06.162

    Article  CAS  PubMed  Google Scholar 

  94. Patil YB, Paknikar KM (2000) Development of a process for biodetoxification of metal cyanides from wastewaters. Proc Biochem 35:1139–1151

    CAS  Google Scholar 

  95. Paixao MA, Tavares CRG, Bergamasco R, Bonifacio ALE, Costa RT (2000) Anaerobic digestion from residue of industrial cassava industrialization with acidogenic and methanogenic physical separation phases. Appl Biochem Biotechnol 84–86:809–819

    PubMed  Google Scholar 

  96. Sorokin DY, Tourova TP, Lysenko AM, Kuenen JG (2001) Microbial thiocyanate utilisation under highly alkaline conditions. Appl Biochem Microbiol 67:528–538. https://doi.org/10.1128/AEM.67.2.528-538.2001

    Article  CAS  Google Scholar 

  97. Kwon HK, Woo SH, Park JM (2002) Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants. Biotechnol Lett 24:1347–1351

    CAS  Google Scholar 

  98. Campos MG, Pereira P, Roseiro JC (2006) Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum CCMI 876 and Methylobacterium sp. RXM CCMI 908. Enzyme Microb Technol 38:848–854. https://doi.org/10.1016/j.enzmictec.2005.08.008

    Article  CAS  Google Scholar 

  99. Maegala NM, Fridelina S, Abdullatif I (2011) Biodegradation of cyanide by Rhodococcus strains isolated in Malaysia. Int Conf Food Eng Biotechnol 9:21–25

    Google Scholar 

  100. Maegala NM, Fridelina S, Abdullatif I, Anthony EG (2012) Cyanide degradation by immobilised cells of Rhodococcus UKMP-5M. Biologia 67(5):837–844. https://doi.org/10.2478/s11756-012-0098-6

    Article  CAS  Google Scholar 

  101. Karamba KI, Shukor MY, Syed MA, Zulkharnain A, Yasid NA, Khalil KA, Ahmad SA (2015) Isolation, screening and characterisation of cyanide degrading Serratia marcescens strain aq07. J Chem PharmbSci 8:401–406

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayaraman Angayarkanni.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendran, R., BS, S., Thandeeswaran, M. et al. Microbial (Enzymatic) Degradation of Cyanide to Produce Pterins as Cofactors. Curr Microbiol 77, 578–587 (2020). https://doi.org/10.1007/s00284-019-01694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01694-9

Navigation