Skip to main content

Advertisement

Log in

Effect Oral Administration Ampicillin on the Ecological Balance of rat Enterococcal gut Microbiota

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The main objective of this work is to investigate the impact of oral administration of ampicillin on the ecological balance of enterococci in the intestinal microbiota of rats during a treatment and a post-treatment. The results have showed that the treated animals excreted significantly higher percentages of resistant enterococci compared to the control group (P ≤ 0.05) during the treatment and after the treatment. The most predominant species selected after the treatment began were Enterococcus faecium. The MICs for ampicillin for all isolates of E. faecium were 32 to 64 µg/mL, with the exception of two strains (TR1LBMB, TR5LBMB), were found to be highly resistant (MICs ≥ 128 µg/mL). Quantification of ampicillin in faeces by the RT-HPLC showed that the significant increase in the number of ampicillin-resistant enterococci was associated with the gradual accumulation of high levels of unabsorbed ampicillin in the faeces. Our results suggest that ampicillin treatment can now be understood as a side effect contributing to the increase in the number of resistant Enterococcus strains, particularly E. faecium strains, recognized as important nosocomial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agerso H, Friis C (1998) Bioavailability of amoxycillin in pigs. J Vet Pharmacol Ther 21:41–46. https://doi.org/10.1046/j.1365-2885.1998.00107.x

    Article  CAS  PubMed  Google Scholar 

  2. Blaser M (2011) Antibiotic overuse: stop the killing of beneficial bacteria. Nature 476:393–394. https://doi.org/10.1038/476393a

    Article  CAS  PubMed  Google Scholar 

  3. Brown-Jaque M, Calero-Cáceres W, Espinal P et al (2018) Antibiotic resistance genes in phage particles isolated from human feces and induced from clinical bacterial isolates. Int J Antimicrob Agents 51:434–442. https://doi.org/10.1016/j.ijantimicag.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  4. Carpenter JW, Mashima TY, Rupiper DJ (2001) Exotic animal formulary, 2nd edn. Elsevier-Saunders, Philadelphia

    Google Scholar 

  5. Clinical and Laboratory Standards Institute (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard, 9th edn. M07-A9. CLSI, Wayne

    Google Scholar 

  6. D’Argenio V, Salvatore V (2015) The role of the gut microbiome in the healthy adult status. Clin Chim Acta 451:97–102. https://doi.org/10.1016/j.cca.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  7. Facklam RR, Collins MD (1989) Identification of Enterococcus species isolated from human infections by a conventional test scheme. J Clin Microbiol 27:731–734. https://doi.org/10.1016/0168-1605(94)00119-Q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernández-Hidalgo N, Almirante B, Gavaldà J et al (2013) Ampicillin plus ceftriaxone is as effective as ampicillin plus gentamicin for treating Enterococcus faecalis infective endocarditis. Clin Infect Dis 56:1261–1268. https://doi.org/10.1093/cid/cit052

    Article  CAS  PubMed  Google Scholar 

  9. Flemera B, Gaci N, Borrel G et al (2017) Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut microbes 8:428–439. https://doi.org/10.1080/19490976.2017.1334033

    Article  CAS  Google Scholar 

  10. Fontana R, Aldegheri M, Ligozzi M et al (1994) Overproduction of a low-affinity penicillin-binding protein and highlevel ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 38:1980–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hitt CM, Nightingale CH, Quintiliani R et al (1997) Streamlining antimicrobial therapy for lower respiratory tract infections. Clin Infect Dis 2:231–237

    Article  Google Scholar 

  12. Jensen GM, Lykkesfeldt J, Frydendahl K et al (2004) Pharmacokinetics of amoxicillin after oral administration in recently weaned piglets with experimentally induced Escherichia coli subtype O149:F4 diarrhea. Am J Vet Res 65:992–995

    Article  CAS  PubMed  Google Scholar 

  13. Johnson SA, Nicolson SW, Jackson S (2004) The effect of different oral antibiotics on the gastrointestinal microflora of a wild rodent (Aethomys namaquensis). Comp Biochem Physiol A 138:475–483

    Article  CAS  Google Scholar 

  14. Karimaei S, Sadeghi J, Asadian M et al (2016) Antibacterial potential and genetic profile of Enterococcus faecium strains isolated from human normal flora. Microb Pathog 96:67–71. https://doi.org/10.1016/j.micpath.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  15. Kostic AD, Howitt MR, Garrett WS (2013) Exploring host–microbiota interactions in animal models and humans. Genes Dev 27:701–718. https://doi.org/10.1101/gad.212522.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar S, Stecher G, Tamura K (2016) Molecular Evolutionary Genetics Analysis version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kung K, Hauser BR, Wanner M (1995) Effect of the interval between feeding and drug administration on oral ampicillin absorption in dogs. J Small Anim Pract 36:65–68

    Article  CAS  PubMed  Google Scholar 

  18. Lizumi T, Battaglia T, Ruiz V et al (2017) Gut Microbiome and Antibiotics. Arch Med Res 48:727–734. https://doi.org/10.1016/j.arcmed.2017.11.004

    Article  CAS  Google Scholar 

  19. Manero A, Blanch AR (1999) Identification of Enterococcus spp. with a biochemical key. Appl Environ Microbiol 65:4425–4430

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Murray BE (1998) Diversity among multidrug-resistant enterococci. Emerg Infect Dis 4:37–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nelson N, Kusmiesz J, Jackson HH et al (1980) Treatment of Salmonella gastroenteritis with ampicillin, amoxicillin, or placebo. Pediatrics 65:1125–1130

    CAS  PubMed  Google Scholar 

  22. Nguyen TL, Vieira-Silva S, Liston A et al (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16. https://doi.org/10.1242/dmm.017400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Picozzi SC, Casellato S, Rossini M et al (2014) Extended-spectrum beta-lactamase-positive Escherichia coli causing complicated upper urinary tract infection: urologist should act in time. Urol Ann 6:107–112. https://doi.org/10.4103/0974-7796.130536

    Article  PubMed  PubMed Central  Google Scholar 

  24. Prichula J, Pereira RI, Wachholz GR et al (2016) Resistance to antimicrobial agents among enterococci isolated from fecal samples of wild marine species in the southern coast of Brazil. Mar Pollut Bull 105:51–57. https://doi.org/10.1016/j.marpolbul.2016.02.071

    Article  CAS  PubMed  Google Scholar 

  25. Radhouani H, Pinto L, Coelho C et al (2010) MLST and genetic study of antibiotic resistance and virulence factors in vanA-containing Enterococcus from buzzards (Buteo buteo). Lett Appl Microbiol 50:537–541. https://doi.org/10.1111/j.1472-765X.2010.02807.x

    Article  CAS  PubMed  Google Scholar 

  26. Radimersky T, Frolkova P, Janoszowska D et al (2010) Antibiotic resistance in faecal bacteria (Escherichia coli, Enterococcus spp.) in feral pigeons. J Appl Microbiol 109:1687–1695. https://doi.org/10.1111/j.1365-2672.2010.04797.x

    Article  CAS  PubMed  Google Scholar 

  27. Ramos S, Igrejas G, Rodrigues J et al (2012) Genetic characterization of antibiotic resistance and virulence factors in vanA-containing enterococci from cattle, sheep and pigs subsequent to the discontinuation of the use of avoparcin. Vet J 193:301–303. https://doi.org/10.1016/j.tvjl.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  28. Rice LB, Carias LL, Hutton-Thomas R et al (2001) Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 45:1480–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rice LB, Lakticová V, Helfand MS et al (2004) In vitro antienterococcal activity explains associations between exposures to antimicrobial agents and risk of colonization by multiresistant enterococci. J Infect Dis 190:2162–2166. https://doi.org/10.1086/425580

    Article  CAS  PubMed  Google Scholar 

  30. Semedo-Lemsaddeka T, Pedrosob NM, Freire D et al (2018) Otter fecal enterococci as general indicators of antimicrobial resistance dissemination in aquatic environments. Ecol Ind 85:1113–1120. https://doi.org/10.1016/j.ecolind.2017.11.029

    Article  Google Scholar 

  31. Shah KJ, Cherabuddi K, Shultz J et al (2018) Ampicillin for the treatment of complicated urinary tract infections caused by vancomycin resistant Enterococcus spp (VRE): a single-center university hospital experience. Int J Antimicrob Agents 51:57–61. https://doi.org/10.1016/j.ijantimicag.2017.06.008

    Article  CAS  PubMed  Google Scholar 

  32. Sullivan Å, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114

    Article  CAS  PubMed  Google Scholar 

  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walters MS, Eggers P, Albrecht V et al (2015) Vancomycin-Resistant Staphylococcus aureus-Delaware, 2015. MMWR Morb Mortal Wkly Rep 64:1056. https://doi.org/10.15585/mmwr.mm6437a6

    Article  PubMed  Google Scholar 

  35. Welling PG (1989) Effects of food on drug absorption. Pharmacol Ther 43:425–441. https://doi.org/10.1016/0163-7258(89)90019-3

    Article  CAS  PubMed  Google Scholar 

  36. Williams MR, Stedtfeld RD, Guo X et al (2016) Antimicrobial resistance in the environment. Water Environ Res 88:1951–1967. https://doi.org/10.2175/106143017X15023776270179

    Article  CAS  PubMed  Google Scholar 

  37. Zoetendal EG, Rajilic-Stojanovic M de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57:1605–1615. https://doi.org/10.1136/gut.2007.133603

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Higher Education and Scientific Research (MESRS; CNEPRU F01820090065) and General Directorate for Scientific Research and Technological Development (DGRSDT; 012/2000). Authors wish to thank Y. BELLIL and Dr M. MOKHTAR for technical support and helpful discussion. Funding was provided by Laboratory of Microorganisms Biology and Biotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taha Ahmed Benabbou.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benabbou, T.A., Karam, H.Z. & Karam, NE. Effect Oral Administration Ampicillin on the Ecological Balance of rat Enterococcal gut Microbiota. Curr Microbiol 76, 329–337 (2019). https://doi.org/10.1007/s00284-019-01635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01635-6

Navigation