Skip to main content

Advertisement

Log in

Morphological Observation and Comparative Transcriptomic Analysis of Clostridium perfringens Biofilm and Planktonic Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacterial biofilms can enhance survival in adverse environments and promote infection. However, little is known about biofilm formation by Clostridium perfringens. To better characterize this process, we used SEM to observe the surfaces of C. perfringens biofilms after 12, 24, 48, and 72 h of incubation. Biofilm cells appeared to be encased in a dense matrix material, and the total biomass of the biofilm increased with incubation time. To gain insight into the differentially expressed genes (DEGs) between biofilm and planktonic cells, we carried out comparative transcriptomic analysis using RNA sequencing. In total, 91 genes were significantly differentially expressed, with 40 being up-regulated and 51 down-regulated. In particular, genes encoding sortase, ribosomal proteins, and ATP synthase were up-regulated in biofilms, while genes coding for clostripain and phospholipase C were down-regulated. To validate the RNA sequencing results, qRT-PCR analysis was performed using five randomly selected DEGs. Results showed that all five genes were up-regulated, which was in accordance with the RNA sequencing results. To examine the functional differences, the DEGs were characterized by GO and KEGG pathway enrichment analyses. Results showed that the up-regulated genes were divided into 32 significantly enriched GO terms, with “macromolecular complex” being the most common. Oxidative phosphorylation was the only significantly enriched pathway, suggesting that ATP is required for biofilm stability. This study provides valuable insights into the morphology and transcriptional regulation of C. perfringens during biofilm formation, and will be useful for understanding and developing biofilm-based processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Charlebois A, Jacques M, Boulianne M, Archambault M (2017) Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiol 62:32–38

    Article  PubMed  CAS  Google Scholar 

  2. Petit L, Gibert M, Popoff MR (1999) Clostridium perfringens: toxinotype and genotype. Trends Microbiol 7(3):104–110

    Article  PubMed  CAS  Google Scholar 

  3. Thomas MK, Murray R, Flockhart L, Pintar K, Pollari F, Fazil A, Nesbitt A, Marshall B (2013) Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathog Dis 10(7):639–648

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bryant AE (2003) Biology and pathogenesis of thrombosis and procoagulant activity in invasive infections caused by group A streptococci and Clostridium perfringens. Clin Microbiol Rev 16(3):451–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Varga JJ, Therit B, Melville SB (2008) Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76(11):4944–4951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  PubMed  CAS  Google Scholar 

  8. Jorge EV, Joshua RS, Canizalez-Roman A (2015) The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms. Infect Immun 83(6):2430–2442

    Article  CAS  Google Scholar 

  9. Obana N, Nakamura K, Nomura N (2014) A Sporulation factor is involved in the morphological change of Clostridium perfringens biofilms in response to temperature. J Bacteriol 196(8):1540–1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrobial Agents 35(4):322–332

    Article  CAS  Google Scholar 

  11. Costerton JW (2001) Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9(2):50–52

    Article  PubMed  CAS  Google Scholar 

  12. Ha KY, Chung YG, Ryoo SJ (2005) Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants. Spine 30(1):38–43

    Article  PubMed  Google Scholar 

  13. Modi N, Wilcox MH (2001) Evidence for antibiotic induced Clostridium perfringens diarrhoea. J Clin Pathol 54(10):748–751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Charlebois A, Jacques M, Archambault M (2014) Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Front Microbiol 5:183

    Article  PubMed  PubMed Central  Google Scholar 

  15. Charlebois A, Jacques M, Archambault M (2016) Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathol 45(5):593–601

    Article  PubMed  CAS  Google Scholar 

  16. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat methods 9(4):357–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  CAS  Google Scholar 

  18. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Suzuki S, Tanigawa O, Akanuma G, Nanamiya H, Kawamura F, Tagami K, Nomura N, Kawabata T, Sekine Y (2014) Enhanced expression of Bacillus subtilis yaaA can restore both the growth and the sporulation defects caused by mutation of rplB, encoding ribosomal protein L2. Microbiology 160(Pt 6):1040–1053

    Article  PubMed  CAS  Google Scholar 

  20. Maracci C, Wohlgemuth I, Rodnina MV (2015) Activities of the peptidyl transferase center of ribosomes lacking protein L27. RNA 21(12):2047–2052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schmohl L, Bierlmeier J, von Kügelgen N, Kurz L, Reis P, Barthels F, Mach P, Schutkowski M, Freund C, Schwarzer D (2017) Identification of sortase substrates by specificity profiling. Bioorg Med Chem 25(18):5002–5007

    Article  PubMed  CAS  Google Scholar 

  22. Jonsson IM, Mazmanian SK, Schneewind O, Bremell T, Tarkowski A (2003) The role of Staphylococus aureus sortase A and sortase B in murine arthritis. Microbes Infect 5(9):775–780

    Article  PubMed  CAS  Google Scholar 

  23. Mishra A, Devarajan B, Reardon ME, Dwivedi P, Krishnan V, Cisar JO, Das A, Narayana SV, Ton-That H (2011) Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development. Mol Microbiol 81(5):1205–1220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mishra A, Wu C, Yang J, Cisar JO, Das A, Ton-That H (2010) The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol Microbiol 77(4):841–854

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Okahashi N, Nakata M, Terao Y, Isoda R, Sakurai A, Sumitomo T, Yamaguchi M, Kimura RK, Oiki E, Kawabata S, Ooshima T (2011) Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation. Microb Pathog 50(3–4):148–154

    Article  PubMed  CAS  Google Scholar 

  26. Metcalf DG, Bowler PG (2013) Biofilm delays wound healing: a review of the evidence. Burns Trauma 1(1):5–12

    Article  PubMed  Google Scholar 

  27. Saville RM, Rakshe S, Haagensen JA, Shukla S, Spormann AM (2011) Energy-dependent stability of Shewanella oneidensis MR-1 biofilms. J Bacteriol 193(13):3257–3264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gilmore KS, Srinivas P, Akins DR, Hatter KL, Gilmore MS (2003) Growth, development, and gene expression in a persistent Streptococcus gordonii biofilm. Infect Immun 71(8):4759–4766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185(6):1951–1957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (Grant Nos. 31460672, 31760739) and Qinghai High Level Talent Innovation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guisheng Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Ma, Y. & Ye, G. Morphological Observation and Comparative Transcriptomic Analysis of Clostridium perfringens Biofilm and Planktonic Cells. Curr Microbiol 75, 1182–1189 (2018). https://doi.org/10.1007/s00284-018-1507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-018-1507-z

Navigation