Skip to main content
Log in

Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Alternate mechanisms of drug resistance involving intrinsic defense pathways play an important role in development of drug resistance. Deregulation of drug efflux, cellular metabolism, and DNA repair have been indicated to have effect on drug tolerance and persistence. Here we chose eight genes from these pathways to investigate their association with development of multidrug resistance (MDR). We generated mono drug resistant and MDR strains of rifampicin and isoniazid and examined the differential expression of genes belonging to efflux, DNA repair and cell wall lipid synthesis pathways. Rv1687c, recB, ppsD and embC genes showed significant (P <0.05) upregulation in mono-resistant (both rifampicin and isoniazid) as well as MDR strains. mmr showed significant upregulation with rifampicin resistance while Rv1457c showed significant upregulation only with mono-resistant strains. Highest expression change was observed with Rv1687c and ppsD. The study identified potential key genes that are significantly associated with development of drug resistance in vitro. These genes may help identify clinical strains predisposed to acquiring drug resistance in patients during the course of treatment or help in management of MDR forms of tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calgin MK, Sahin F, Turegun B, Gerceker D, Atasever M, Koksal D, Karasartova D, Kiyan M (2013) Expression analysis of efflux pump genes among drug-susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates and reference strains. Diagn Microbiol Infect Dis 76(3):291–297

    Article  CAS  PubMed  Google Scholar 

  2. Camacho LR, Constant P, Raynaud C, Lanéelle M-A, Triccas JA, Gicquel B, Daffé M, Guilhot C (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis: evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276(23):19845–19854

    Article  CAS  PubMed  Google Scholar 

  3. Chatterjee A, Saranath D, Bhatter P, Mistry N (2013) Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance. PLoS ONE 8(1):e54717. https://doi.org/10.1371/journal.pone.0054717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, Furin J, Nardell EA, London L, Lessem E (2017) The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 5(4):291–360

    Article  Google Scholar 

  5. Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher EM, Calver A, Sloutsky A (2013) Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 45(10):1183–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fonseca JD, Knight GM, McHugh TD (2015) The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. Int J Infect Dis 32:94–100. https://doi.org/10.1016/j.ijid.2015.01.014

    Article  CAS  PubMed  Google Scholar 

  7. Fukuda T, Matsumura T, Ato M, Hamasaki M, Nishiuchi Y, Murakami Y, Maeda Y, Yoshimori T, Matsumoto S, Kobayashi K (2013) Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis. MBio 4(1):e00472–e00412

    Article  Google Scholar 

  8. Goude R, Amin AG, Chatterjee D, Parish T (2008) The critical role of embC in Mycobacterium tuberculosis. J Bacteriol 190(12):4335–4341. https://doi.org/10.1128/JB.01825-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goude R, Parish T (2008) The genetics of cell wall biosynthesis in Mycobacterium tuberculosis. Future Microbiol 3:299–313

    Article  CAS  PubMed  Google Scholar 

  10. Hao P, Shi-Liang Z, Ju L, Ya-Xin D, Biao H, Xu W, Min-Tao H, Shou-Gang K, Ke W (2011) The role of ABC efflux pump, Rv1456c-Rv1457c-Rv1458c, from Mycobacterium tuberculosis clinical isolates in China. Folia Microbiol 56(6):549–553

    Article  Google Scholar 

  11. Kanji A, Hasan R, Zhang Y, Shi W, Imtiaz K, Iqbal K, Shafiq S, Hasan Z (2016) Increased expression of efflux pump genes in extensively drug-resistant isolates of Mycobacterium tuberculosis. Int J Mycobacteriol 5(Suppl 1):S150. https://doi.org/10.1016/j.ijmyco.2016.09.067

    Article  PubMed  Google Scholar 

  12. Li G, Zhang J, Guo Q, Jiang Y, Wei J, Zhao LL, Zhao X, Lu J, Wan K (2015) Efflux pump gene expression in multidrug-resistant Mycobacterium tuberculosis clinical isolates. PLoS ONE 10(2):e0119013. https://doi.org/10.1371/journal.pone.0119013

    Article  PubMed  PubMed Central  Google Scholar 

  13. Louw GE, Warren RM, Gey van Pittius NC, McEvoy CRE, Van Helden PD, Victor TC (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53(8):3181–3189. https://doi.org/10.1128/aac.01577-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Machado D, Coelho TS, Perdigao J, Pereira C, Couto I, Portugal I, Maschmann RA, Ramos DF, von Groll A, Rossetti MLR, Silva PA, Viveiros M (2017) Interplay between mutations and efflux in drug resistant clinical isolates of Mycobacterium tuberculosis. Front Microbiol 8:711. https://doi.org/10.3389/fmicb.2017.00711

    Article  PubMed  PubMed Central  Google Scholar 

  15. Machado D, Couto I, Perdigao J, Rodrigues L, Portugal I, Baptista P, Veigas B, Amaral L, Viveiros M (2012) Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS ONE 7(4):e34538. https://doi.org/10.1371/journal.pone.0034538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinez JL BF (2000) Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 44:1771–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF (2014) Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 69(2):292–302. https://doi.org/10.1093/jac/dkt364

    Article  CAS  PubMed  Google Scholar 

  18. Morlock GP PB, Crawford JT (2000) Characterization of spontaneous, in vitro-selected, rifampin-resistant mutants of Mycobacterium tuberculosis strain H37Rv. Antimicrob Agents Chemother 44:3298–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Muller B, Borrell S, Rose G, Gagneux S (2013) The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis. Trends Genet 29(3):160–169. https://doi.org/10.1016/j.tig.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  20. Oh TS, Kim YJ, Kang HY, Kim CK, Cho SY, Lee HJ (2017) RNA expression analysis of efflux pump genes in clinical isolates of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis in South Korea. Infect Genet Evol 49:111–115. https://doi.org/10.1016/j.meegid.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  21. Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE (2015) Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 71(1):17–26

    Article  PubMed  Google Scholar 

  22. Rodrigues L, Villellas C, Bailo R, Viveiros M, ainsa JA (2013) Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57(2):751–757. https://doi.org/10.1128/AAC.01482-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rose G, Cortes T, Comas I, Coscolla M, Gagneux S, Young DB (2013) Mapping of genotype-phenotype diversity among clinical isolates of Mycobacterium tuberculosis by sequence-based transcriptional profiling. Genome Biol Evol 5(10):1849–1862. https://doi.org/10.1093/gbe/evt138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schmalstieg AM, Srivastava S, Belkaya S, Deshpande D, Meek C, Leff R, van Oers NS, Gumbo T (2012) The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 56(9):4806–4815

    Article  PubMed  PubMed Central  Google Scholar 

  25. Srivastava S, Musuka S, Sherman C, Meek C, Leff R, Gumbo T (2010) Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J Infect Dis 201(8):1225–1231. https://doi.org/10.1086/651377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. WHO (2016) World Health Organization: Global tuberculosis report

Download references

Acknowledgements

This work was supported by Department of Science and Technology, Government of India [SB/SO/HS-0065/2013]. The authors thank Ms Rupali Kekane for her technical assistance in performing line probe assays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nerges Mistry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriraman, K., Nilgiriwala, K., Saranath, D. et al. Deregulation of Genes Associated with Alternate Drug Resistance Mechanisms in Mycobacterium tuberculosis . Curr Microbiol 75, 394–400 (2018). https://doi.org/10.1007/s00284-017-1393-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1393-9

Navigation