Skip to main content
Log in

Use of a Commercially Available Microarray to Characterize Antibiotic-Resistant Clinical Isolates of Klebsiella pneumoniae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A commercially available microarray (IDENTIBAC AMR-ve) for the detection of antibiotic resistance determinants was investigated for its potential to genotype 30 clinical isolates and two control strains of Klebsiella pneumoniae. Resistance profiles and the production of extended-spectrum β-lactamases were determined by disc diffusion and the results were compared with the microarray profiles in order to assess its scope and limitations. Genes associated with resistance to a wide range of antibiotics, including current first line therapy options, were detected. In addition, the array also detected class 1 integrases. The array is easy to use and interpret, and is useful in providing a general description of the numbers and types of resistance determinants in K. pneumoniae. It also provides an indication of the potential for resistance gene acquisition. However, in most instances detected resistance to specific antibiotics could not unequivocally be assigned to hybridization with a specific array probe. We conclude that the microarray is a valuable and rapid means of investigating the presence of resistance gene classes of therapeutic importance. It can also provide a starting point for selecting analyses of greater resolving power, such as phylogenetic subtyping by PCR sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almaghrabi R, Clancy CJ, Doi Y, Hao B et al (2014) Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother 58:4443–4451

    Article  PubMed  PubMed Central  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  3. Ambler RP (1980) The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331

    Article  CAS  PubMed  Google Scholar 

  4. Babini GS, Livermore DM (2000) Are SHV β-lactamases universal in Klebsiella pneumoniae? Antimicrob Agents Chemother 44:2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Batchelor M, Hopkins KL, Liebana E, Slickers P et al (2008) Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in gram-negative bacteria. Int J Antimicrob Agents 31:440–451

    Article  CAS  PubMed  Google Scholar 

  6. Bhattacharjee A, Sen MR, Prakash P, Gaur A et al (2010) Observation on integron carriage among clinical isolates of Klebsiella pneumoniae producing extended-spectrum β-lactamases. Ind J Med Microbiol 28:207–210

    Article  CAS  Google Scholar 

  7. Bokaeian M, Saeidi S, Shahi Z, Kadaei V (2014) TetA and tetB Genes in Klebsiella pneumoniae isolated from clinical samples. Gene Cell Tissue 1:e18152. doi:10.17795/gct-18152

    Article  Google Scholar 

  8. Bonnet R (2004) Growing group of extended-spectrum β-lactamases: the CTX-M-type enzymes. Antimicrob Agents Chemother 48:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bush K, Jacoby GA (2010) Updated functional classification of β-lactamases. Antimicrob Agents Chemother 54:969–976

    Article  CAS  PubMed  Google Scholar 

  10. Card R, Zhang J, Das P, Cook C et al (2013) Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. Antimicrob Agents Chemother 57:458–465. doi:10.1128/AAC.01223-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Casin I, Hanau-Berçot B, Podglajen I, Vahaboglu H et al (2003) Salmonella enterica serovar Typhimurium blaPER-1-carrying plasmid pSTI1 encodes an extended-spectrum aminoglycoside 6′-N-acetyltransferase of type Ib. Antimicrob Agents Chemother 47:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Charnock C, Nordlie AL, Hjeltnes B (2014) Toxin production and antibiotic resistances in Escherichia coli Isolated from bathing areas along the coastline of the Oslo Fjord. Curr Microbiol 69:317–328

    Article  CAS  PubMed  Google Scholar 

  13. Chaves J, Ladona MG, Segura C, Coira A et al (2001) SHV-1 β-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob Agents Chemother 45:2856–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Edelstein M, Pimkin M, Palagin I, Edelstein I et al (2003) Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 47:3724–3732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Endimiani A, DePasquale JM, Forero S, Perez F et al (2009) Emergence of blaKPC-containing Klebsiella pneumoniae in a long-term acute care hospital: a new challenge to our healthcare system. J Antimicrob Chemother 64:1102–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frank T, Gautier V, Talarmin A, Bercion R et al (2007) Characterization of sulphonamide resistance genes and class 1 integron gene cassettes in Enterobacteriaceae, Central African Republic (CAR). J Antimicrob Chemother 59:742–745

    Article  CAS  PubMed  Google Scholar 

  17. Hammond DS, Schooneveldt JM, Nimmo GR, Huygens F et al (2005) blaSHV genes in Klebsiella pneumoniae: different allele distributions are associated with different promoters within individual isolates. Antimicrob Agents Chemother 49:256–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heritage J, M’Zali FH, Gascoyne-Binzi D, Hawkey PM (1999) Evolution and spread of SHV extended-spectrum β-lactamases in Gram-negative bacteria. J Antimicrob Chemother 44:309–318

    Article  CAS  PubMed  Google Scholar 

  19. Miller GH, Sabatelli FJ, Hare RS, Glupczynski Y et al (1997) The most frequent aminoglycoside resistance mechanisms—changes with time and geographic area: a reflection of aminoglycoside usage patterns? Clin Infect Dis 24:46–62

    Article  Google Scholar 

  20. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ et al (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796

    Article  PubMed  PubMed Central  Google Scholar 

  21. Park SH, Byun JH, Choi SM, Lee DG et al (2012) Molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in the community and hospital in Korea: emergence of ST131 producing CTX-M-15. BMC Infect Dis 12:149

    Article  PubMed  PubMed Central  Google Scholar 

  22. Petit A, Yaghlane-Bouslama HB, Sofer L, Labia R (1992) Does high level production of SHV-type penicillinase confer resistance to ceftazidime in Enterobacteriaceae? FEMS Microbiol Lett 92:89–94

    Article  CAS  Google Scholar 

  23. Rice LB, Carias LL, Hujer AM, Bonafede M et al (2000) High-level expression of chromosomally encoded SHV-1 β-lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin-tazobactam in a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 44:362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M et al (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88

    Article  CAS  PubMed  Google Scholar 

  25. Rossolini GM, D’andrea MM, Mugnaioli C (2008) The spread of CTX-M-type extended-spectrum β-lactamases. Clin Microbiol Infect 14:33–41

    Article  CAS  PubMed  Google Scholar 

  26. Schwaber MJ, Carmeli Y (2008) Carbapenem-resistant Enterobacteriaceae: a potential threat. Jama 300:2911–2913

    CAS  PubMed  Google Scholar 

  27. Seiffert SN, Hilty M, Perreten V, Endimiani A (2013) Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health? Drug Res Updates 16:22–45

    Article  Google Scholar 

  28. Shams F, Hasani A, Rezaee MA, Nahaie MR et al (2015) Carriage of class 1 and 2 integrons in quinolone, extended-spectrum-β-lactamase-producing and multi drug resistant E. coli and K. pneumoniae: high burden of antibiotic resistance. Adv Pharm Bull 5:335–342

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT (2012) Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25:682–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walsh F, Cooke NM, Smith SG, Moran GP et al (2010) Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae. Int J Antimicrob Agents 35:593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang G, Huang T, Surendraiah PKM, Wang K et al (2013) CTX-M β-lactamase-producing Klebsiella pneumoniae in suburban New York City, New York, USA. Emerg Infect Dis 9:1803–1810

    Article  Google Scholar 

  33. Wang W, Guo Q, Xu X, Sheng ZK et al (2014) High-level tetracycline resistance mediated by efflux pumps tet (A) and tet (A)-1 with two start codons. J Med Microbiol 63:1454–1459

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the ‘NORM surveillance programme for antimicrobial resistance in human pathogens’ at the University Hospital of North Norway for providing financial support to the project. Thanks to Anders Benteson Nygaard for assistance with Fig. 1.

Funding

The study received on open application a research grant from NORM surveillance programme for antimicrobial resistance in human pathogens to partially cover the purchase of consumables to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Charnock.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charnock, C., Samuelsen, Ø., Nordlie, AL. et al. Use of a Commercially Available Microarray to Characterize Antibiotic-Resistant Clinical Isolates of Klebsiella pneumoniae . Curr Microbiol 75, 163–172 (2018). https://doi.org/10.1007/s00284-017-1361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1361-4

Navigation