Skip to main content
Log in

Introducing a Novel Media to Improve the Recovery of Culturable Bacteria from the Fish Parasite Anisakis spp. larvae (Nematoda: Anisakidae)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This paper describes a cultivation method to increase the recovery of bacteria from the marine muscle-invading parasitic nematode larvae of Anisakis spp. These larvae hold a high and complex population of accumulated bacteria, originating from seawater, crustaceans, fish, and marine mammals, all involved in the lifecycle of Anisakis. Two in-house agars based on fish juice prepared by either mechanical or enzymatic degradation of the fish tissue, were made. The Anisakis larvae were homogenised prior to cultivation on the in-house fish juice agars and the bacterial numbers and diversity were compared to those obtained applying the commercially available Marine Agar and Iron Agar Lyngby. Bacterial colonies of unique appearance were subcultured and identified by 16S rRNA gene sequencing. Totally three of twenty identified taxa were found on the in-house fish juice agars only. Fish juice agar prepared enzymatically would be the best supplementary agar, as this agar gave significantly higher heterotrophic plate counts, compared to mechanical preparation. The enzymatically prepared fish juice gave more suitable agar quality, was more resource efficient, and had apparently increased nutrient density and availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bauer A, Østensvik Ø, Florvåg M, Ørmen Ø, Rørvik LM (2006) Occurrence of Vibrio parahaemolyticus, V. cholerae, and V. vulnificus in Norwegian blue mussels (Mytilus edulis). Appl Environ Microbiol 72(4):3058–3061. doi:10.1128/aem.72.4.3058-3061.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bik EM (2016) The hoops, hopes, and hypes of human microbiome research. Yale J Biol Med 89(3):363–373

    PubMed  PubMed Central  Google Scholar 

  3. Bowman JP (2006) The marine clade of the family flavobacteriaceae: the genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroflexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia. In: The Prokaryotes. Springer, New York pp 677–694

  4. Bowman JP, Nichols DS (2005) Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55(4):1471–1486

    Article  CAS  PubMed  Google Scholar 

  5. Bozal N, Montes MJ, Tudela E, Guinea J (2003) Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. Int J Syst Evol Microbiol 53(4):1093–1100. doi:10.1099/ijs.0.02457-0

    Article  CAS  PubMed  Google Scholar 

  6. Broekaert K, Noseda B, Heyndrickx M, Vlaemynck G, Devlieghere F (2013) Volatile compounds associated with Psychrobacter spp. and Pseudoalteromonas spp., the dominant microbiota of brown shrimp (Crangon crangon) during aerobic storage. Int J Food Microbiol 166(3):487–493

    Article  CAS  PubMed  Google Scholar 

  7. Böhme K, Fernández-No IC, Pazos M, Gallardo JM, Barros-Velázquez J, Cañas B, Calo-Mata P (2013) Identification and classification of seafood-borne pathogenic and spoilage bacteria: 16S rRNA sequencing versus MALDI-TOF MS fingerprinting. Electrophoresis 34(6):877–887

    Article  PubMed  Google Scholar 

  8. Dalgaard P (1995) Qualitative and quantitative characterization of spoilage bacteria from packed fish. Int J Food Microbiol 26(3):319–333. doi:10.1016/0168-1605(94)00137-u

    Article  CAS  PubMed  Google Scholar 

  9. Eilers H, Pernthaler J, Glockner FO, Amann R (2000) Culturability and In situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66(7):3044–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Emborg J, Laursen BG, Rathjen T, Dalgaard P (2002) Microbial spoilage and formation of biogenic amines in fresh and thawed modified atmosphere-packed salmon (Salmo salar) at 2 °C. J Appl Microbiol 92(4):790–799. doi:10.1046/j.1365-2672.2002.01588.x

    Article  CAS  PubMed  Google Scholar 

  11. Gerdts G, Brandt P, Kreisel K, Boersma M, Schoo KL, Wichels A (2013) The microbiome of North Sea copepods. Helgol Mar Res 67(4):757–773. doi:10.1007/s10152-013-0361-4

    Article  Google Scholar 

  12. Gram L, Dalgaard P (2002) Fish spoilage bacteria—problems and solutions. Curr Opin Biotechnol 13(3):262–266

    Article  CAS  PubMed  Google Scholar 

  13. Gram L, Huss HH (1996) Microbiological spoilage of fish and fish products. Int J Food Microbiol 33(1):121–137

    Article  CAS  PubMed  Google Scholar 

  14. Han SK, Nedashkovskaya OI, Mikhailov VV, Kim SB, Bae KS (2003) Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53(6):2061–2066

    Article  CAS  PubMed  Google Scholar 

  15. Holmes B (2006) The Genera Flavobacterium, Sphingobacterium and Weeksella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer New York, pp 539–548. doi:10.1007/0-387-30747-8_19

  16. Ivanova EP, Kiprianova EA, Mikhailov VV, Levanova GF, Garagulya AD, Gorshkova NM, Vysotskii MV, Nicolau DV, Yumoto N, Taguchi T, Yoshikawa S (1998) Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Evol Microbiol 48(1):247–256. doi:10.1099/00207713-48-1-247

    Google Scholar 

  17. Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Appl Environ Microbiol 72(6):3832–3845. doi:10.1128/aem.02869-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim B-S, Jeon Y-S, Chun J (2013) Current status and future promise of the human microbiome. Pediatr Gastroenterol Hepatol Nutr 16(2):71–79

    Article  PubMed  PubMed Central  Google Scholar 

  19. Leiva S, Alvarado P, Huang Y, Wang J, Garrido I (2015) Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica. FEMS Microbiol Lett 362(24):206. doi:10.1093/femsle/fnv206

    Article  Google Scholar 

  20. Liaset B, Julshamn K, Espe M (2003) Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with Protamex™. Process Biochem 38(12):1747–1759. doi:10.1016/S0032-9592(02)00251-0

    Article  CAS  Google Scholar 

  21. Moore E, Tindall B, Santos V, Pieper D, Ramos J-L, Palleroni N (2006) Nonmedical: Pseudomonas. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer, New York, pp 646–703

    Chapter  Google Scholar 

  22. Müller H, Zachow C, Alavi M, Tilcher R, Krempl PM, Thallinger GG, Berg G (2013) Complete genome sequence of the sugar beet endophyte Pseudomonas poae RE*1-1-14, a disease-suppressive bacterium. Genome Announc 1(2):e00020. doi:10.1128/genomeA.00020-13

    Article  PubMed Central  Google Scholar 

  23. Nedashkovskaya OI, Kim SB, Lysenko AM, Park MS, Mikhailov VV, Bae KS, Park HY (2005) Roseivirga echinicomitans sp. nov., a novel marine bacterium isolated from the sea urchin Strongylocentrotus intermedius, and emended description of the genus Roseivirga. Int J Syst Evol Microbiol 55(5):1797–1800. doi:10.1099/ijs.0.63621-0

    Article  CAS  PubMed  Google Scholar 

  24. Park MS, Park Y-J, Jung JY, Lee SH, Park W, Lee K, Jeon CO (2011) Pusillimonas harenae sp. nov., isolated from a sandy beach, and emended description of the genus Pusillimonas. Int J Syst Evol Microbiol 61(12):2901–2906. doi:10.1099/ijs.0.029892-0

    Article  CAS  PubMed  Google Scholar 

  25. Slepecky R, Hemphill HE (2006) The Genus Bacillus—Nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer, US, pp 530–562. doi:10.1007/0-387-30744-3_16

  26. Svanevik CS, Levsen A, Lunestad BT (2013) The role of muscle-invading anisakid larvae on bacterial contamination of the flesh of post-harvest blue whiting (Micromesistius poutassou). Food Control 30(2):526–530. doi:10.1016/j.foodcont.2012.08.003

    Article  Google Scholar 

  27. Svanevik CS, Lunestad BT (2011) Characterisation of the microbiota of Atlantic mackerel (Scomber scombrus). Int J Food Microbiol 151(2):164–170. doi:10.1016/j.ijfoodmicro.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  28. Svanevik CS, Lunestad BT, Levsen A (2014) Effect of Anisakis simplex (sl) larvae on the spoilage rate and shelf-life of fish mince products under laboratory conditions. Food Control 46:121–126. doi:10.1016/j.foodcont.2014.05.018

    Article  Google Scholar 

  29. Øvreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63(9):3367–3373

    PubMed  PubMed Central  Google Scholar 

  30. Özen AI, Ussery DW (2012) Defining the Pseudomonas Genus: where do we draw the line with azotobacter? Microb Ecol 63(2):239–248. doi:10.1007/s00248-011-9914-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Institute of Nutrition and Seafood Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilie S. Svanevik.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svanevik, C.S., Lunestad, B.T. Introducing a Novel Media to Improve the Recovery of Culturable Bacteria from the Fish Parasite Anisakis spp. larvae (Nematoda: Anisakidae). Curr Microbiol 74, 1043–1048 (2017). https://doi.org/10.1007/s00284-017-1281-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1281-3

Navigation