Skip to main content

Advertisement

Log in

Simultaneous Detection of Brown Rot- and Soft Rot-Causing Bacterial Pathogens from Potato Tubers Through Multiplex PCR

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Ralstonia solanacearum (Smith) Yabuuchi et al. and Erwinia carotovora subsp. carotovora (Jones) Bergey et al. (Pectobacterium carotovorum subsp. carotovorum) are the two major bacterial pathogens of potato causing brown rot (wilt) and soft rot diseases, respectively, in the field and during storage. Reliable and early detection of these pathogens are keys to avoid occurrence of these diseases in potato crops and reduce yield loss. In the present study, multiplex polymerase chain reaction (PCR) protocol was developed for simultaneous detection of R. solanacearum and E. carotovora subsp. carotovora from potato tubers. A set of oligos targeting the pectatelyase (pel) gene of E. carotovora subsp. carotovora and the universal primers based on 16S r RNA gene of R. solanacearum were used. The standardized multiplex PCR protocol could detect R. solanacearum and E. carotovora subsp. carotovora up to 0.01 and 1.0 ng of genomic DNA, respectively. The protocol was further validated on 96 stored potato tuber samples, collected from different potato-growing states of India, viz. Uttarakhand, Odisha, Meghalaya and Delhi. 53.1 % tuber samples were positive for R. solanacearum, and 15.1 % of samples were positive for E. carotovora subsp. carotovora, and both the pathogens were positive in 26.0 % samples when BIO-PCR was used. This method offers sensitive, specific, reliable and fast detection of two major bacterial pathogens from potato tubers simultaneously, particularly pathogen-free seed certification in large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrios GN (2006) Bacterial soft rots 5th Edn Academic Press San Diego

  2. Alvarez AM (2004) Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial disease. Annu Rev Phytopathol 42:339–366

    Article  CAS  PubMed  Google Scholar 

  3. Bergey DH, Harrison FC, Bread RS, Hammer BW, Huntoon FM (1939) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  4. Ciampi L Sequeira L French ER (1981) Pseudomonas solanacearum distribution in potato plants and the establishment of latent infections. In: C Lozano (Ed) Proceedings of the 5th international conference on plant pathogenic Bacteria cali, Colombia Centro Internacional de Agricultura Tropical (pp 148–161)

  5. Czajkowski R, Perombelon MCM, Van Veen JA, Van der Wolf JM (2012) Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol 60:999–1013

    Article  Google Scholar 

  6. Denny TP (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant associated bacteria. Springer, Dordtrecht, pp 573–644

    Chapter  Google Scholar 

  7. Elphinstone JG (2005) The current bacterial wilt situation: a global overview. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt disease and the Ralstonia solanacearum species complex. APS, New York, pp 9–28

    Google Scholar 

  8. Grimberg J, Maguire S, Belluscio L (1989) A simple method for the preparation of plasmid and chromosomal E. coli DNA. Nucleic Acid Res 17:8893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayward AC (1991) Biology and epidemiology of baterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87. doi:10.1146/annurevpy29090191000433

    Article  CAS  PubMed  Google Scholar 

  10. Hélias V, Andrivon D, Jouan B (2000) Internal colonization pathways of potato plants by Erwinia carotovora subsp. atroseptica. Plant Pathol 49:33–42

    Article  Google Scholar 

  11. Helias V, Hamon P, Huchet E, van der Wolf JM, Andrivon D (2011) Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol 61:339–345

    Article  Google Scholar 

  12. Hyman LJ, Sullivan L, Toth IK, Perombelon MCM (2001) Modified crystal violet pectate medium (CVP) based on a new polypectate source (Slendid) for the detection and isolation of soft rot erwinias. Potato Res 44:265–270

    Article  Google Scholar 

  13. Ito S, Ushijima Y, Fujii T, Tanaka S, Kameya-Iwaki M, Yoshiwara S, Kishi F (1998) Detection of viable cells of Ralstonia solanacearum in soil using a semi-selective medium and a PCR technique. J Phyto pathol 146:379–384

    Article  Google Scholar 

  14. Janse JD, Wenneker M (2002) Possibilities of avoidance and control of bacterial plant diseases when using pathogen-tested (certified) or -treated planting material. Plant Pathol 51:523–536

    Article  Google Scholar 

  15. Larka BS (2004) Integrated approach for the management of soft rot (Pectobacterium carotovorum subsp. carotovorum) of radish (Raphanus sativus) seed crop. Haryana J Agron 20:128–129

    Google Scholar 

  16. Lopez M, Bertolini E, Olmos A, Caruso P, Gorris M, Llop P, Penyalver R, Cambra M (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Inter Microbiol 6:233–243

    Article  CAS  Google Scholar 

  17. Markoulatos P, Siafakas N, Moncany M (2002) Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal 16:47–51

    Article  CAS  PubMed  Google Scholar 

  18. Mikicinski A, Sobiczewski P, Puławska J, Treder J (2010) Involvement of Paenibacillus polymyxa in the etiology of bacterial soft rot of Calla Lily. J Plant Pathol 92:375–380

    Google Scholar 

  19. Mikicinski A, Sobiczewski P, Sulikowska M, Puławska J, Treder J (2010) Pectolytic bacteria associated with soft rot of Calla Lily (Zantedeschia spp.) tubers. J Phyto pathol 158:201–209

    Article  Google Scholar 

  20. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucl Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Opina N, Tavner F, Hollway G, Wang JF, Li TH, Maghirang R, Fegan M, Hayward AC, Krishnapillai V, Hong WF, Holloway BW, Timmis JN (1997) A novel method for development of species and strain specific DNA probes and PCR primer for identifying Burkholderia solanacearum. Asia Pac J Mol Bio 5:19–30

    Google Scholar 

  22. Ozakman M, Schaad NW (2003) A real-time BIO-PCR assay for detection of Ralstonia solanacearum race 3, biovar 2, in asymptomatic potato tubers. Can J Plant Pathol 25:232–239

    Article  CAS  Google Scholar 

  23. Potrykus M, Sledz W, Golanowska M, Slawiak M, Binek A, Motyka A, Zoledowska S, Lojkowska EC (2014) Simultaneous detection of major blackleg and sot rot bacterial pathogens in potato by multiplex polymerase chain reaction. Ann Appl Biol 165:474–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pradhanang PM, Elphinstone JG, Fox RTV (2000) Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol 49:414–422

    Article  Google Scholar 

  25. Schaad NW, Jones JB, Chun W (2001) Laboratory guide for identification of plant pathogenic bacteria. APS, New York, pp 154–174

    Google Scholar 

  26. Singh D, Dhar S (2011) Bio-PCR based diagnosis of Xanthomonas campestris pathovars in black rot infected leaves of crucifers. Indian Phytopathol 64(1):7–11

    CAS  Google Scholar 

  27. Dinesh Singh, Shweta Sinha, Yadav DK (2014) Detection of Ralstonia solanacearum from asymptomatic tomato, Irrigation water and soil through non-selective enrichment medium with hrp Gene-based Bio-PCR. Curr Microbiol 69:127–134

    Article  Google Scholar 

  28. Somani AK, Chakrabarti SK, Pandey SK (2010) Spread of bacterial wilt and brown rot of potato in Indore region of Madhya Pradesh. CPRI News Lett 42:16–17

    Google Scholar 

  29. Stulberg MJ, Shao J, Huang Q (2015) A multiplex PCR assay to detect and differentiate seletcted agent strains of Ralstonia solanacearum. Plant Dis 99:333–341

    Article  Google Scholar 

  30. Ward E, Foster JS, Fraaije BA, McCartney HA (2004) Plant pathogen diagnostic: immunological and nucleic acid-based approaches. Ann Appl Biol 145:1–16

    Article  CAS  Google Scholar 

  31. Zielke R, Naumann K (1984) Untersuchungenzur Erfassung des latenten Befallsstadiums von Corynebacterium sepedonicum (Spieck. etKotth.) Skapt. etBurkh. imKartoffelgewebe. Zentralblattfürmikrobiologie 139(4):267–280

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to ICAR for financial assistance. The authors are also thankful to the Head, the Division of Plant Pathology, IARI, New Delhi for providing research facilities, planning and encouragement to execute the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R.K., Singh, D. & Baranwal, V.K. Simultaneous Detection of Brown Rot- and Soft Rot-Causing Bacterial Pathogens from Potato Tubers Through Multiplex PCR. Curr Microbiol 73, 652–659 (2016). https://doi.org/10.1007/s00284-016-1110-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1110-0

Keywords

Navigation