Skip to main content
Log in

Detection and Enumeration of Streptococcus agalactiae from Bovine Milk Samples by Real-Time Polymerase Chain Reaction

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the use of real-time polymerase chain reaction (qPCR) combined with DNA extraction directly from composite milk and bulk tank samples for detection and enumeration of Streptococcus agalactiae (SAG) causing subclinical mastitis. Dilutions of sterile reconstituted skim milk inoculated with SAG ATCC 13813 were used to establish a standard curve (cfu/mL) for the qPCR assay targeting SAG. The analytical sensitivity and repeatability of the qPCR assay were determined. Bulk tank (BTM; n = 38) and composite milk samples (CM; n = 26) collected from lactating cows with positive isolation of SAG were submitted to the qPCR protocol and SAG plate counting, with results from both methods compared. Amplification of DNA was not possible in two out of 64 samples, indicating that qPCR was able to detect SAG in 96 and 97 % of BTM and CM samples, respectively. The inter-assay coefficient of variation was <5 %, showing that the technique had adequate repeatability. The qPCR protocol can be a high-throughput and rapid diagnostic assay to accurately detect SAG from BTM and CM samples compared with conventional microbiological culture method. However, the evaluated qPCR protocol is not accurate for enumerating SAG in milk samples, probably due to quantification of DNA of non-viable cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Altman DG (1991) Practical statistics for medical research. Chapman and Hall, London

    Google Scholar 

  2. Barreiro JR, Ferreira CR, Sanvido GB, Kostrzewa M, Maier T, Wegemann B, Bottcher V, Eberlin MN, dos Santos MV (2010) Short communication: identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Dairy Sci 93(12):5661–5667. doi:10.3168/jds.2010-3614

    Article  CAS  PubMed  Google Scholar 

  3. Bland JM, Altman DG (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 47(8):931–936. doi:10.1016/j.ijnurstu.2009.10.001

    Article  Google Scholar 

  4. Botaro BG, Cortinhas CS, Março LV, Moreno JFG, Silva LFP, Benites NR, Santos MV (2013) Detection and enumeration of Staphylococcus aureus from bovine milk samples by real-time polymerase chain reaction. J Dairy Sci 96(11):6955–6964. doi:10.3168/jds.2013-6559

    Article  CAS  PubMed  Google Scholar 

  5. Brito MAVP, Brito JRF, Souza HMd, Vargas OL (1998) Avaliação da sensibilidade da cultura de leite do tanque para isolamento de agentes contagiosos da mastite bovina. Pesquisa Veterinária Brasileira 18:39–44

    Article  Google Scholar 

  6. Bustin S (2004) A-Z of quantitative PCR. International University Line, La Jolla

    Google Scholar 

  7. Cremonesi P, Castiglioni B, Malferrari G, Biunno I, Vimercati C, Moroni P, Morandi S, Luzzana M (2006) Technical note: improved method for rapid DNA extraction of mastitis pathogens directly from milk. J Dairy Sci 89(1):163–169. doi:10.3168/jds.S0022-0302(06)72080-X

    Article  CAS  PubMed  Google Scholar 

  8. Duarte RS, Miranda OP, Bellei BC, Brito MA, Teixeira LM (2004) Phenotypic and molecular characteristics of Streptococcus agalactiae isolates recovered from milk of dairy cows in Brazil. J Clin Microbiol 42(9):4214–4222. doi:10.1128/jcm.42.9.4214-4222.2004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Elias AO, Cortez A, Brandao PE, da Silva RC, Langoni H (2012) Molecular detection of Streptococcus agalactiae in bovine raw milk samples obtained directly from bulk tanks. Res Vet Sci 93(1):34–38. doi:10.1016/j.rvsc.2011.07.016

    Article  CAS  PubMed  Google Scholar 

  10. Épizooties OId (2010) The Animal Health and Production Compendium: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. http://www.cabi.org/ahpc/default.aspx?site=160&page=3323. Accessed 4 Jan 2012

  11. Farnsworth RJ (1987) Indications of contagious and environmental mastitis pathogens in a dairy herd. In: Proceedings 26th Annual Meeting of the National Mastitis Council O, FL, pp 151–5

  12. Gianneechini R, Concha C, Rivero R, Delucci I, Moreno Lopez J (2002) Occurrence of clinical and sub-clinical mastitis in dairy herds in the West Littoral Region in Uruguay. Acta Vet Scand 43(4):221–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gillespie BE, Oliver SP (2005) Simultaneous detection of mastitis pathogens, Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae by multiplex real-time polymerase chain reaction. J Dairy Sci 88(10):3510–3518. doi:10.3168/jds.S0022-0302(05)73036-8

    Article  CAS  PubMed  Google Scholar 

  14. Graber HU, Casey MG, Naskova J, Steiner A, Schaeren W (2007) Development of a highly sensitive and specific assay to detect Staphylococcus aureus in bovine mastitic milk. J Dairy Sci 90(10):4661–4669. doi:10.3168/jds.2006-902

    Article  CAS  PubMed  Google Scholar 

  15. Hassanin A, Douzery EJ (1999) The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol Phylogenet Evol 13(2):227–243. doi:10.1006/mpev.1999.0619

    Article  CAS  PubMed  Google Scholar 

  16. Hogan JSSK (1992) Using bulk tank milk cultures in a dairy practice. Workshop Mastitis Microbiology Diagnostics, National Mastitis Council, Arlington

    Google Scholar 

  17. Jayarao BM, Doré JJ, Baumbach GA, Matthews KR, Oliver SP (1991) Differentiation of Streptococcus uberis from Streptococcus parauberis by polymerase chain reaction and restriction fragment length polymorphism analysis of 16S ribosomal DNA. J Clin Microbiol 29(12):2774–2778

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Jayarao BM, Pillai SR, Sawant AA, Wolfgang DR, Hegde NV (2004) Guidelines for monitoring bulk tank milk somatic cell and bacterial counts. J Dairy Sci 87(10):3561–3573. doi:10.3168/jds.S0022-0302(04)73493-1

    Article  CAS  PubMed  Google Scholar 

  19. Justice-Allen A, Trujillo J, Goodell G, Wilson D (2011) Detection of multiple Mycoplasma species in bulk tank milk samples using real-time PCR and conventional culture and comparison of test sensitivities. J Dairy Sci 94(7):3411–3419. doi:10.3168/jds.2010-3940

    Article  CAS  PubMed  Google Scholar 

  20. Katholm J, Bennedsgaard TW, Koskinen MT, Rattenborg E (2012) Quality of bulk tank milk samples from Danish dairy herds based on real-time polymerase chain reaction identification of mastitis pathogens. J Dairy Sci 95(10):5702–5708. doi:10.3168/jds.2011-5307

    Article  CAS  PubMed  Google Scholar 

  21. Keefe G (2012) Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet Clin North Am Food Anim Pract 28(2):203–216. doi:10.1016/j.cvfa.2012.03.010

    Article  PubMed  Google Scholar 

  22. Keefe G CA, Jaramillo M, Londoño M, Chaffer M, Toro M (2011) Effects of Streptococcus agalactiae on the Columbian Dairy Industry. In: Proceedings of International Symposium. Mastitis and Milk Quality, 3rd National Mastitis Council, St. Louis, MO, pp 155–159

  23. Keefe GP (1997) Streptococcus agalactiae mastitis: a review. Can Vet J 38(7):429–437

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66(4):1328–1333. doi:10.1128/aem.66.4.1328-1333.2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res 29(1):181–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Koskinen MT, Holopainen J, Pyorala S, Bredbacka P, Pitkala A, Barkema HW, Bexiga R, Roberson J, Solverod L, Piccinini R, Kelton D, Lehmusto H, Niskala S, Salmikivi L (2009) Analytical specificity and sensitivity of a real-time polymerase chain reaction assay for identification of bovine mastitis pathogens. J Dairy Sci 92(3):952–959. doi:10.3168/jds.2008-1549

    Article  CAS  PubMed  Google Scholar 

  27. Koskinen MT, Wellenberg GJ, Sampimon OC, Holopainen J, Rothkamp A, Salmikivi L, van Haeringen WA, Lam TJ, Pyorala S (2010) Field comparison of real-time polymerase chain reaction and bacterial culture for identification of bovine mastitis bacteria. J Dairy Sci 93(12):5707–5715. doi:10.3168/jds.2010-3167

    Article  CAS  PubMed  Google Scholar 

  28. Le Roux Y, Laurent F, Moussaoui F (2003) Polymorphonuclear proteolytic activity and milk composition change. Vet Res 34(5):629–645. doi:10.1051/vetres:2003021

    Article  PubMed  Google Scholar 

  29. Lee ZM-P, Bussema C, Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Research 37(Database issue):D489–D493. doi:10.1093/nar/gkn689

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Makovec JA, Ruegg PL (2003) Results of milk samples submitted for microbiological examination in Wisconsin from 1994 to 2001. J Dairy Sci 86(11):3466–3472. doi:10.3168/jds.S0022-0302(03)73951-4

    Article  CAS  PubMed  Google Scholar 

  31. McDonald WL, Fry BN, Deighton MA (2005) Identification of Streptococcus spp. causing bovine mastitis by PCR–RFLP of 16S–23S ribosomal DNA. Vet Microbiol 111(3–4):241–246. doi:10.1016/j.vetmic.2005.10.012

    Article  CAS  PubMed  Google Scholar 

  32. Meiri-Bendek I, Lipkin E, Friedmann A, Leitner G, Saran A, Friedman S, Kashi Y (2002) A PCR-based method for the detection of Streptococcus agalactiae in milk. J Dairy Sci 85(7):1717–1723. doi:10.3168/jds.S0022-0302(02)74245-8

    Article  CAS  PubMed  Google Scholar 

  33. Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320. doi:10.1016/j.mimet.2006.04.015

    Article  CAS  PubMed  Google Scholar 

  34. Nogva HK, Dromtorp SM, Nissen H, Rudi K (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5’-nuclease PCR. BioTechniques 34(4):804–808, 810, 812–803

  35. Oliver SPGR, Hogan JS, Jayarao BM, Owens WN (2004) Microbiological procedures for the diagnosis of bovine udder infection and determination of milk quality. National Mastitis Council, Verona

    Google Scholar 

  36. Phuektes P, Mansell PD, Browning GF (2001) Multiplex polymerase chain reaction assay for simultaneous detection of Staphylococcus aureus and streptococcal causes of bovine mastitis. J Dairy Sci 84(5):1140–1148. doi:10.3168/jds.S0022-0302(01)74574-2

    Article  CAS  PubMed  Google Scholar 

  37. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28(5):848–861. doi:10.1016/j.fm.2011.02.008

    Article  CAS  PubMed  Google Scholar 

  38. Santos EMPBM, Lange C, Brito JRF, Cerqueira MMOP (2006) Streptococcus and related genera as etiological agents of bovine mastitis. Acta Scientiae Veterinariae 35(1):17–27

    Google Scholar 

  39. Sears PM, Smith BS, English PB, Herer PS, Gonzalez RN (1990) Shedding pattern of Staphylococcus aureus from bovine intramammary infections. J Dairy Sci 73(10):2785–2789. doi:10.3168/jds.S0022-0302(90)78964-3

    Article  CAS  PubMed  Google Scholar 

  40. Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43(Database issue):D593–D598. doi:10.1093/nar/gku1201

    Article  PubMed Central  PubMed  Google Scholar 

  41. Taponen S, Salmikivi L, Simojoki H, Koskinen MT, Pyorala S (2009) Real-time polymerase chain reaction-based identification of bacteria in milk samples from bovine clinical mastitis with no growth in conventional culturing. J Dairy Sci 92(6):2610–2617. doi:10.3168/jds.2008-1729

    Article  CAS  PubMed  Google Scholar 

  42. Taskin B, Gozen AG, Duran M (2011) Selective quantification of viable Escherichia coli bacteria in biosolids by quantitative PCR with propidium monoazide modification. Appl Environ Microbiol 77(13):4329–4335. doi:10.1128/aem.02895-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zadoks RN SH, Tikofsky-Garrison LL (2005) Molecular tools enhance the value of bulk tank milk monitoring. In: Proceedings of 44th Annual Meeting NMC pp 86–93

Download references

Acknowledgments

The authors are grateful to José Garcia Moreno Franchini, Lucinéia Mestieri, Lígia Garcia Mesquita, and Daniele Cristine Beuron for technical assistance and Roberta Lyman who reviewed the English writing.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Veiga dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Carvalho, N.L., Gonçalves, J.L., Botaro, B.G. et al. Detection and Enumeration of Streptococcus agalactiae from Bovine Milk Samples by Real-Time Polymerase Chain Reaction. Curr Microbiol 71, 363–372 (2015). https://doi.org/10.1007/s00284-015-0855-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0855-1

Keywords

Navigation