Skip to main content
Log in

Glochidioboside Kills Pathogenic Bacteria by Membrane Perturbation

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the antibacterial effects of glochidioboside and determine its mechanism of action. Glochidioboside has been reported to be isolated from some plants but the underlying biological properties have remained largely obscure until now. To identify the antibacterial activity of all biological properties, pathogenic bacteria susceptibility test was performed, and the result shows that the compound displays remarkable antibacterial activity against antibiotic-resistant bacteria not to mention general pathogen. To demonstrate membrane disruption and depolarization, SYTOX green and bis-(1,3-dibutylbarbituric acid) trimethine oxonol were used with Escherichia coli O157, and indicated that glochidioboside affected cytoplasmic membranes by permeabilization and depolarization, respectively. Calcein efflux was evident in a membrane model that encapsulated fluorescent dye, and supported the hypothesis of a membrane-active mechanism. To confirm the release of intracellular matrix owing to membrane damage, the movements of potassium ion were observed; the results indicated that the cells treated with glochidioboside leaked potassium ion, thus the damage induced by the compounds lead to leaking intracellular components. We propose that glochidioboside kills pathogenic bacteria via perturbation of integrity of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CH2Cl2 :

Dichloromethane

EtOAc:

Ethyl acetate

n-BuOH:

n-Butanol

ATCC:

American Type Culture Collection

MIC:

Minimum inhibitory concentrations

PBS:

Phosphate-buffered saline

DiBAC4(3):

Bis-(1,3-dibutylbarbituric acid) trimethine oxonol

GUV:

Giant unilamellar vesicle

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

LUV:

Large unilamellar vesicle

References

  1. Abreu AC, McBain AJ, Simões M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29:1007–1021

    Article  CAS  PubMed  Google Scholar 

  2. Angelova MI, Dimitrov DS (1986) Liposome electroformation. Faraday Discuss Chem Soc 81:303–311

    Article  CAS  Google Scholar 

  3. Angelova MI, Sloeau S, Meleard P, Faucon JF, Bothorel P (1992) Preparation of giant vesicles by external AC electric fields. Kinetics and application. Prog Colloid Polym Sci 89:127–131

    CAS  Google Scholar 

  4. CLSI (2005) Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, 15th edn. CLSI, Wayne

    Google Scholar 

  5. Coyne S, Courvalin P, Périchon B (2011) Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 55:947–953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cushnie TP, Cushnie B, Lamb AJ (2014) Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 44:377–386

    Article  CAS  PubMed  Google Scholar 

  7. Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  PubMed  Google Scholar 

  8. de Freitas CD, Lopes JL, Beltramini LM, de Oliveira RS, Oliveira JT, Ramos MV (2011) Osmotin from Calotrpis procera latex: new insights into structure and antifungal properties. Biochim Biophys Acta 1808:2501–2507

    Article  PubMed  Google Scholar 

  9. Deering AJ, Mauer LJ, Pruitt RE (2012) Internalization of E. coli O157:H7 and Salmonella spp. in plants: A review. Food Res Int 45:567–575

    Article  Google Scholar 

  10. Dong LP, Ni W, Dong JY, Li JZ, Chen CX, Liu HY (2006) A new neolignan glycoside from the leaves of Acer truncatum. Molecules 11:1009–1014

    Article  CAS  PubMed  Google Scholar 

  11. Fazio A, Plastina P, Meijerink J, Witkamp RF, Gavriele B (2013) Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. Food Chem 150:817–824

    Article  Google Scholar 

  12. Gibbons S (2008) Phytochemicals for bacterial resistance – strengths, weaknesses and opportunities. Planta Med 74:594–602

    Article  CAS  PubMed  Google Scholar 

  13. Hamada T, Hagihara H, Morita M, Vestergaard MDC, Tsujino Y, Takagi M (2012) Physicochemical profiling of surfactant-induced membrane dynamics in a cell-sized liposome. J Phys Chem Lett 3:430–435

    Article  CAS  Google Scholar 

  14. Herbst R, Marciano-Cabral F, Leippe M (2004) Antimicrobial and pore-forming peptides of free-living and potentially highly pathogenic Naegleria fowleri are released from the same precursor molecule. J Biol Chem 275:25955–25958

    Article  Google Scholar 

  15. Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2:32–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kumar K, Awasthi D, Lee SY, Cummings JE, Knudson SE, Slayden RA, Ojima I (2013) Benzimidazole-based antibacterial agents against Francisella tularensis. Bioorg Med Chem 21:3318–3326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15:279–289

    Article  CAS  PubMed  Google Scholar 

  18. Lee J, Choi H, Cho J, Lee DG (2011) Effects of positively charged arginine residues on membrane pore forming activity of Rev-NIS peptide in bacterial cells. Biochim Biophys Acta 1808:2421–2427

    Article  CAS  PubMed  Google Scholar 

  19. Lennen RM, Kruziki MA, Kumar K, Zinkel RA, Burnum KE, Lipton MS, Hoover SW, Ranatunga DR, Wittkopp TM, Marner WD, Pfleger BF (2011) Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Appl Environ Microbiol 77:8114–8128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lüders S, David F, Steinwand M, Jordan E, Hust M, Dübel S, Franco-Lara E (2011) Influence of the hydromechanical stress and temperature on growth and antibody fragment production with Bacillus megaterium. Appl Microbiol Biotechnol 91:81–90

    Article  PubMed  Google Scholar 

  21. Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103:15997–16002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Meister A, Finger S, Hause G, Blume A (2014) Morphological changes of bacterial model membrane vesicles. Eur J Lipid Sci Technol 116:1228–1233

    Article  CAS  Google Scholar 

  23. Moerman L, Bosteels S, Noppe W, Willems J, Clynen E, Schoofs L, Thevissen K, Tytgat J, Van Eldere J, Van Der Walt J, Verdonck F (2002) Antibacterial and antifungal properties of alpha-helical, cationic peptides in the venom of scorpions from southern Africa. Eur J Biochem 269:4799–4810

    Article  CAS  PubMed  Google Scholar 

  24. Orlov DS, Nguyen T, Lehrer RI (2002) Potassium release, a useful tool for studying antimicrobial peptides. J Microbiol Methods 49:325–328

    Article  CAS  PubMed  Google Scholar 

  25. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG, Hussain M, Zhang K, Kubes P (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185:7413–7425

    Article  CAS  PubMed  Google Scholar 

  26. Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  27. Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicob Agents Chemother 47:2538–2544

    Article  CAS  Google Scholar 

  28. Sueyoshi E, Liu H, Matusunami K, Otsuka H, Shinzato T, Aramoto M, Takeda Y (2006) Bridelionosides A-F: megastigmane glucosides from Bridelia glauca F. balansae. Phytochemistry 67:2483–2493

    Article  CAS  PubMed  Google Scholar 

  29. Takeda Y, Mima C, Masuda T, Hirata E, Takushi A, Otsuka H (1998) Glochidioboside, a glucoside of (7S, 8R)-dihydrodehydrodiconiferyl alcohol from leaves of glochidion obovatum. Phytochemistry 49:2137–2139

    Article  CAS  Google Scholar 

  30. Tamba Y, Ariyama H, Levadny V, Yamazaki M (2010) Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes. J Phys Chem B 114:12018–12026

    Article  CAS  PubMed  Google Scholar 

  31. Wang C, Chen T, Zhang N, Yang M, Li B, Lü X, Cao X, Ling C (2009) Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting IkappaBalpha kinase-NFkappaB. J Biol Chem 6:3804–3813

    Article  Google Scholar 

  32. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81:1475–1485

    Article  PubMed Central  PubMed  Google Scholar 

  33. Yoneyama F, Imura Y, Ohno K, Zendo T, Nakayama J, Matsuzaki K, Sonomoto K (2009) Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin. lactin Q. Antimicrob Agents Chemother 53:3211–3217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Next-Generation BioGreen 21 Program (Project No. PJ01104303), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Woo, ER. & Lee, D.G. Glochidioboside Kills Pathogenic Bacteria by Membrane Perturbation. Curr Microbiol 71, 1–7 (2015). https://doi.org/10.1007/s00284-015-0807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0807-9

Keywords

Navigation