Skip to main content

Advertisement

Log in

Presence of fimH, mrkD, and irp2 Virulence Genes in KPC-2-Producing Klebsiella pneumoniae Isolates in Recife-PE, Brazil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae strains can produce different virulence factors, such as fimbrial adhesins and siderophores, which are important in the colonization and development of the infection. The aims of this study were to determine the occurrence of fimH, mrkD, and irp2 virulence genes in 22 KPC-2-producing K. pneumoniae isolates as well as 22 not producing-KPC isolates, from patients from different hospitals in Recife-PE, Brazil, and also to analyze the clonal relationship of the isolates by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The genes were detected by PCR and DNA sequencing. The bla KPC-2 gene was identified in 22 KPC-positive isolates. On analyzing the antimicrobial susceptibility profile of the isolates, it was detected that polymyxin and amikacin were the antimicrobials of best activity against K. pneumoniae. On the other hand, five isolates exhibited resistance to polymyxin. In the KPC-positive group, was observed a high rate of resistance to cephalosporins, followed by carbapenems. Molecular typing by ERIC-PCR detected 38 genetic profiles, demonstrating a multiclonal spread of the isolates analyzed. It was observed that the virulence genes irp2, mrkD, and fimH were seen to have together a higher frequency in the KPC-positive group. The accumulation of virulence genes of KPC-positive K. pneumoniae isolates, observed in this study, along with the multi-resistance impose significant therapeutic limitations on the treatment of infections caused by K. pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bach S, De Almeida A, Carniel E (2000) The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett 183:289–294

    Article  PubMed  CAS  Google Scholar 

  2. Bachman MA, Oyler JE, Burns SH et al (2011) Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2. Infect Immun 79:3309–3316

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Ben-Hamouda T, Foulon T, Ben-Cheikh-Masmoudi A et al (2003) Molecular epidemiology of an outbreak of multiresistant Klebsiella pneumoniae in a Tunisian neonatal ward. J Med Microbiol 52:427–433

    Article  PubMed  CAS  Google Scholar 

  4. Bratu S, Landman D, Haag R et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City. Arch Intern Med 165:1430–1435

    Article  PubMed  CAS  Google Scholar 

  5. Cabral AB, Melo RCA, Maciel MAV et al (2012) Multidrug resistance genes, including bla KPC and bla CTX-M-2, among Klebsiella pneumoniae isolated in Recife, Brazil. Rev Soc Bras Med Trop 45:572–578

    Article  PubMed  Google Scholar 

  6. Carniel E (2001) The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect 3:561–569

    Article  PubMed  CAS  Google Scholar 

  7. Clinical and Laboratory Standards Institute (CLSI) (2011) Performance standards for antimicrobial susceptibility testing; Twenty-first informational supplement. CLSI document M100-S21, Wayne, PA: CLSI

  8. Dienstmann R, Picoli SU, Meyer G et al (2010) Avaliação fenotípica da enzima Klebsiella pneumoniae carbapenemase (KPC) em Enterobacteriaceae de ambiente hospitalar. J Bras Patol Med Lab 46:23–27

    Article  CAS  Google Scholar 

  9. Duan H, Chai T, Liu J et al (2009) Source identification of airborne Escherichia coli of swine house surroundings using ERIC-PCR and REP-PCR. Environ Res 109:511–517

    Article  PubMed  CAS  Google Scholar 

  10. Ejrnæs K (2011) Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull 58:1–22

    Google Scholar 

  11. El Fertas-Aissani R, Messai Y, Alouache S et al (2013) Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris) 61:209–216

    Article  Google Scholar 

  12. Guilvout I, Mercereau-Puijalon O, Bonnefoy S et al (1993) High-molecular-weight protein 2 of Yersinia enterocolitica is homologous to AngR of Vibrio anguillarum and belongs to a family of proteins involved in nonribosomal peptide synthesis. J Bacteriol 175:5488–5504

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Han HL, Huang Y, Zhang MM et al (2012) Clinical analysis of early postoperative pulmonary infection in children after living donor liver transplantation. Zhonghua Er Ke Za Zhi 50:612–616

    PubMed  Google Scholar 

  14. Ktari S, Arlet G, Mnif B et al (2006) Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian University Hospital. Antimicrob Agents Chemother 50:4198–4201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Langstraat J, Bohse M, Clegg S (2001) Type 3 Fimbrial (mrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (mrkD), facilitates biofilm formation. Infect Immun 69:5805–5812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Lawlor MS, O’Connor C, Miller VL (2007) Yersiniabactin is a virulence factor for Klebsiella pneumoniae during pulmonary infections. Infect Immun 75:1463–1472

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Leavitt A, Chmelnitsky I, Colodner R et al (2009) Ertapenem resistance among extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates. J Clin Microbiol 47:969–974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Mamina C, Bonura C, Di Bernardo F et al (2012) Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, June to December 2001. Euro Surveill 17:20248

    Google Scholar 

  19. Monteiro J, Santos AF, Asensi MD et al (2009) First report of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrob Agents Chemother 53:333–334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Peirano G, Seki L, Passos VLV et al (2009) Carbapenem-hydrolysing beta-lactamase KPC-2 in Klebsiella pneumoniae isolated in Rio de Janeiro, Brazil. J Antimicrob Chemother 63:265–268

    Article  PubMed  CAS  Google Scholar 

  21. Pereira PS, Araújo CFM, Seki LM et al (2012) Update of the molecular epidemiology of KPC-2-producing Klebsiella pneumoniae in Brazil: spread of clonal complex 11(ST11, ST437 and ST340). J Antimicrob Chemother 68:312–316

    Article  PubMed  Google Scholar 

  22. Pfaller MA, Acar J, Jones RN et al (2001) Integration of molecular characterization of microorganisms in a global antimicrobial resistance surveillance program. Clin Infect Dis 32:156–167

    Article  Google Scholar 

  23. Podschun R, Fischer A, Ullman U (2000) Characterization of Klebsiella terrigena strains from humans: haemagglutinins, serum resistance, siderophore synthesis, and serotypes. Epidemiol Infect 125:71–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Podschun R, Fischer A, Ullman U (2000) Expression of putative virulence factors by clinical isolates of Klebsiella planticola. J Med Microbiol 49:115–119

    PubMed  CAS  Google Scholar 

  25. Ramos PIV, Picão RC, Almeida LGP et al (2014) Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 15:54

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sahly H, Navon-Venezia S, Roesler L et al (2008) Extended-spectrum β-lactamase production is associated with an increase in cell invasion and expression of fimbrial adhesins in Klebsiella pneumoniae. Antimicrob Agents Chemother 52:3029–3034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Santos DF, Pimenta FC, Alves R et al (2008) Extended-spectrum β-lactamases producing Klebsiella pneumoniae isolated in two hospitals in Goiânia/Brazil: detection, prevalence, antimicrobial susceptibility and molecular typing. Braz J Microbiol 39:608–612

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schjørring S, Struve C, Krogfelt KA (2008) Transfer of antimicrobial resistance plasmids from Klebsiella pneumoniae to Escherichia coli in the mouse intestine. J Antimicrob Chemother 62:1086–1093

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schubert S, Cuenca S, Fisher D et al (2000) High-pathogenicity island of Yersinia pestis in Enterobacteriaceae isolated from blood cultures and urine samples: prevalence and functional expression. J Infect Dis 182:1268–1271

    Article  PubMed  CAS  Google Scholar 

  31. Souza Lopes AC, Rodrigues JF, Morais Júnior MA (2005) Molecular typing of Klebsiella pneumoniae isolates from public hospitals in Recife, Brazil. Microbiol Res 160:37–46

    Article  PubMed  Google Scholar 

  32. Stahlhut SG, Chattopadhyay S, Struve C et al (2009) Population variability of the fimH type 1 fimbrial adhesin in Klebsiella pneumoniae. J Bacteriol 191:1941–1950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Struve C, Bojer M, Krogfelt KA (2009) Identification of a conserved chromosomal region encoding Klebsiella pneumoniae type 1 and type 3 fimbriae and assessment of the role of fimbriae in pathogenicity. Infect Immun 77:5016–5024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Tosin I, Silbert S, Sader HS (2003) The use of molecular typing to evaluate the dissemination of antimicrobial resistance among Gram-negative rods in Brazilian Hospitals. Braz J Infect Dis 7:360–369

    Article  PubMed  CAS  Google Scholar 

  35. Vaara M, Sader HS, Rhomberg PR et al (2012) Antimicrobial activity of the novel polymyxin derivative NAB739 tested against Gram-negative pathogens. J Antimicrob Chemother 68:636–639

    Article  PubMed  Google Scholar 

  36. Wallace KMP, Bethel CR, Destler AM et al (2010) Inhibitor resistance in the KPC-2 β-lactamases, a preeminent property of this class A β-lactamases. Antimicrob Agents Chemother 54:890–897

    Article  Google Scholar 

  37. Wilson JW, Schurr MJ, LeBlanc CL et al (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78:216–224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Woodford N, Dallow JW, Hill RL et al (2007) Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int J Antimicrob Agents 29:456–459

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rita de Cássia Andrade Melo or Ana Catarina Souza Lopes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Cássia Andrade Melo, R., de Barros, E.M.R., Loureiro, N.G. et al. Presence of fimH, mrkD, and irp2 Virulence Genes in KPC-2-Producing Klebsiella pneumoniae Isolates in Recife-PE, Brazil. Curr Microbiol 69, 824–831 (2014). https://doi.org/10.1007/s00284-014-0662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0662-0

Keywords

Navigation