Skip to main content

Advertisement

Log in

2,3-Dihydroxybenzoic Acid Electrospun into Poly(d,l-lactide) (PDLLA)/Poly(ethylene oxide) (PEO) Nanofibers Inhibited the Growth of Gram-Positive and Gram-Negative Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Widespread emergence of antibiotic-resistant pathogens in recent years has restricted the treatment options for various infectious diseases. Investigation of alternative antimicrobial agents and therapies is thus of utmost importance. Electrospinning of 50 mg/ml 2,3-dihydroxybenzoic acid (DHBA) into 24 % (w/v) poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO) (1:1) produced nanofibers with an average diameter of 401 ± 122 nm. DHBA released from the nanofibers (315 ± 0.04 µg/ml within 2 h) inhibited the growth of Pseudomonas aeruginosa Xen 5, Klebsiella pneumoniae Xen 39, Escherichia coli Xen 14, Salmonella typhimurium Xen 26, and Staphylococcus aureus strains Xen 30, Xen 31, and Xen 36. The reason for the rapid diffusion of DHBA from PEO:PDLLA may be due to formation of hydrogen bonds between the hydroxyl groups of DHBA and the C=O groups of the PDLLA. DHBA formed a strong interaction with PDLLA and increased the thermal stability of the nanofiber mesh. The DHBA-containing nanofibers were non-hemolytic, suggesting that they may be incorporated in the development of a wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jr Aduba DC, Hammer JA, Yuan Q, Yeudall WA, Bowlin GL, Yang H (2013) Semi-interpenetrating network (sIPN) gelatin nanofiber scaffolds for oral mucosal drug delivery. Acta Biomater 9:6576–6584

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Andrews SC, Robinson AK, Rodriguez-Quinones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237

    Article  PubMed  CAS  Google Scholar 

  3. Baldwin SR, Simon RH, Boxer LA, Till GO, Kunkel RG (1985) Attenuation by 2,3-dihydroxybenzoic acid of acute lung injury induced by cobra venom factor in the rat. Am Rev Respir Dis 132:1288–1293

    PubMed  CAS  Google Scholar 

  4. Blatt J, Taylor SR, Kontoghiorghes GJ (1989) Comparison of activity of deferoxamine with that of oral iron chelators against human neuroblastoma cell lines. Cancer Res 49:2925–2927

    PubMed  CAS  Google Scholar 

  5. Bullen JJ, Rogers HJ, Spalding PB, Ward CG (2006) Natural resistance, iron and infection: a challenge for clinical medicine. J Med Microbiol 55:251–258

    Article  PubMed  CAS  Google Scholar 

  6. Burns JL, Mancoll JS, Phillips LG (2003) Impairments to wound healing. Clin Plastic Surg 30:47–56

    Article  Google Scholar 

  7. Cason J Jr, Dyke GO (1950) Preparation of 2,3-dihydroxybenzoic acid. J Am Chem Soc 72:621–622

    Article  CAS  Google Scholar 

  8. Che HL, Muthiah M, Ahn Y, Son S, Kim WJ et al (2011) Biodegradable particulate delivery of vascular endothelial growth factor plasmid from polycaprolactone/polyethylenimine electrospun nanofibers for the treatment of myocardial infarction. J Nanosci Nanotechnol 11:7073–7077

    Article  PubMed  CAS  Google Scholar 

  9. Chew SY, Wen J, Yim EKF, Leong KW (2005) Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6:2017–2024

    Article  PubMed  CAS  Google Scholar 

  10. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19:403–434

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eriksen TH, Skovsen E, Fojan P (2013) Release of antimicrobial peptides from electrospun nanofibres as a drug delivery system. J Biomed Nanotechnol 9:492–498

    Article  PubMed  CAS  Google Scholar 

  12. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL et al (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33:9167–9178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Gilchrist SE, Lange D, Letchford K, Bach H, Fazli L et al (2013) Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections. J Control Release 170:64–73

    Article  PubMed  CAS  Google Scholar 

  14. Graziano JH, Grady RW, Cerami A (1974) The identification of 2,3-dihydroxybenzoic acid as a potentially useful iron-chelating drug. J Pharmacol Exp Ther 190:570–575

    PubMed  CAS  Google Scholar 

  15. Graziano JH, Miller DR, Grady RW, Cerami A (1976) Inhibition of membrane peroxidation in thalassaemic erythrocytes by 2,3-dihydroxybenzoic acid. Br J Haematol 32:351–356

    Article  PubMed  CAS  Google Scholar 

  16. Heunis TDJ, Bshena O, Klumperman B, Dicks LMT (2011) Release of bacteriocins from nanofibers prepared with combinations of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO). Int J Mol Sci 12:2158–2173

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Heunis TDJ, Dicks LMT (2010) Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol 61:1–10

    Article  Google Scholar 

  18. Heunis TDJ, Smith C, Dicks LMT (2013) Evaluation of a nisin-eluting nanofiber scaffold to treat Staphylococcus aureus-induced skin infections in mice. Antimicrob Agents Chemother 57:3928–3935

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Jin G, Prabhakaran MP, Nadappuram BP, Singh G, Kai D, Ramakrishna S (2012) Electrospun poly(l-lactic acid)-co-poly(ɛ-caprolactone) nanofibres containing silver nanoparticles for skin-tissue engineering. J Biomater Sci Polym Ed 23:861–871

    Article  Google Scholar 

  20. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG et al (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    Article  CAS  Google Scholar 

  21. Khalil KA, Fouad H, Elsarnagawy T, Almajhdi FN (2013) Preparation and characterization of electrospun PLGA/silver composite nanofibers for biomedical applications. Int J Electrochem Sci 8:3483–3493

    Google Scholar 

  22. Kim T, Lee H, Kim Y, Nam JM, Lee M (2013) Protein-coated nanofibers for promotion of T cell activity. Chem Commun 49:3949–3951

    Article  CAS  Google Scholar 

  23. Kim K, Yu M, Zong X, Chiu J, Fang D et al (2003) Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications. Biomaterial 24:4977–4985

    Article  CAS  Google Scholar 

  24. Mammadov R, Mammadov B, Guler MO, Tekinay AB (2012) Growth factor binding on heparin mimetic peptide nanofibers. Biomacromolecules 13:3311–3319

    Article  PubMed  CAS  Google Scholar 

  25. Manning CN, Schwartz AG, Liu W, Xie J, Havlioglu N et al (2013) Controlled delivery of mesenchymal stem cells and growth factors using a nanofiber scaffold for tendon repair. Acta Biomater 9:6905–6914

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Meng ZX, Xu XX, Zheng W, Zhou HM, Li L et al (2011) Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. Colloids Surf B 84:97–102

    Article  CAS  Google Scholar 

  27. Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z et al (2012) Core/shell nanofibers with embedded liposomes as a drug delivery system. Biomacromolecules 13:952–962

    Article  PubMed  CAS  Google Scholar 

  28. Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 22:615–624

    Article  PubMed  Google Scholar 

  29. Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  PubMed  CAS  Google Scholar 

  30. Rujitanaroj P, Pimpha N, Supaphol P (2008) Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymer 49:4723–4732

    Article  CAS  Google Scholar 

  31. Sousa M, Ousingsawat J, Seitz R, Puntheeranurak S, Regalado A et al (2007) An extract from the medicinal plant Phyllanthus acidus and its isolated compounds induce airway chloride secretion: a potential treatment for cystic fibrosis. Mol Pharmacol 71:366

    Article  PubMed  CAS  Google Scholar 

  32. Torres NI, Noll KS, Xu S, Li J, Huang Q et al (2013) Safety, formulation and in vitro antiviral activity of the antimicrobial peptide subtilosin against herpes simplex virus type 1. Probiotics Antimicrob Prot 5:26–35

    Article  CAS  Google Scholar 

  33. Vaxman F, Olender S, Lambert A, Nisand G, Grenier JF (1996) Can the wound healing process be improved by vitamin supplementation? Experimental study on humans. Eur Surg Res 28:306–314

    Article  PubMed  CAS  Google Scholar 

  34. Wang C, Yan KW, Lin YD, Hsieh PCH (2010) Biodegradable core/shell fibers by coaxial electrospinning: processing, fiber characterization, and its application in sustained drug release. Macromolecules 43:6389–6397

    Article  CAS  Google Scholar 

  35. Wenk J, Foitzik A, Achterberg V, Sabiwalsky A, Dissemond J et al (2001) Selective pickup of increased iron by deferoxamine-coupled cellulose abrogates the iron-driven induction of matrix-degrading metalloproteinase 1 and lipid peroxidation in human dermal fibroblasts in vitro: a new dressing concept. J Invest Dermatol 116:833–839

    Article  PubMed  CAS  Google Scholar 

  36. Yu DG, Wang X, Li XY, Chian W, Li Y, Liao YZ (2013) Electrospun biphasic drug release polyvinylpyrrolidone/ethyl cellulose core/sheath nanofibers. Acta Biomater 9:5665–5672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Ahire JJ is grateful to Claude Leon Foundation Postdoctoral Fellowship (2013–2014), Cape Town, South Africa, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon M. T. Dicks.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahire, J.J., Neppalli, R., Heunis, T.D.J. et al. 2,3-Dihydroxybenzoic Acid Electrospun into Poly(d,l-lactide) (PDLLA)/Poly(ethylene oxide) (PEO) Nanofibers Inhibited the Growth of Gram-Positive and Gram-Negative Bacteria. Curr Microbiol 69, 587–593 (2014). https://doi.org/10.1007/s00284-014-0635-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0635-3

Keywords

Navigation