Skip to main content
Log in

Variations on the Tait–Kneser Theorem

  • Mathematical Gems and Curiosities
  • Sophie Morier-Genoud and Valentin Ovsienko, Editors
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. V. I. Arnold. Huygens and Barrow, Newton and Hooke: Pioneers in Mathematical Analysis and Catastrophe Theory from Evolvents to Quasicrystals. Birkhäuser, 1990.

  2. J. Bertrand. Théorème relatif au mouvement d’un point attiré vers un centre fixe. C. R. Acad. Sci. 77 (1873), 849–853.

    MATH  Google Scholar 

  3. M. K. Bohlin. Note sur le problème des deux corps et sur une intégration nouvelle dans le problème des trois corps. Bull. Astron. 28 (1911), 113–119.

    MATH  Google Scholar 

  4. G. Bor and C. Jackman. Revisiting Kepler: new symmetries of an old problem. Preprint available at arXiv:2106.02823.

  5. É. Cartan. La geometría de las ecuaciones diferenciales de tercer orden. Rev. Mat. Hispano-Amer. 4 (1941), 1–31.

    Google Scholar 

  6. S.-S. Chern. Sur la géométrie d’une équation différentielle du troisième ordre. C. R. Acad. Sci., Paris 204 (1937), 1227–1229.

  7. S.-S. Chern. The geometry of the differential equations \(y^{\prime \prime \prime } = F(x,y,y^{\prime },y^{\prime \prime })\). Sci. Rep. Nat. Tsing Hua Univ. 4 (1940), 97–111.

    MathSciNet  MATH  Google Scholar 

  8. A. Givental. Kepler’s laws and conic sections. Arnold Math J. 2 (2016), 139–148.

    Article  MathSciNet  Google Scholar 

  9. E. Ghys, S. Tabachnikov, and V. Timorin. Osculating curves: around the Tait–Kneser theorem. Math. Intelligencer 35:1 (2013), 61–66.

    Article  MathSciNet  Google Scholar 

  10. E. Kasner. The trajectories of dynamics. Trans. Amer. Math. Soc. 7 (1906), 401–424.

    Article  MathSciNet  Google Scholar 

  11. E. Kasner. Differential-Geometric Aspects of Dynamics, Princeton Colloquium, vol. 3. AMS, 1913.

  12. S. Frittelli, C. Kozameh, and E. T. Newman. Differential geometry from differential equations. Comm. in Math. Phys. 223:2 (2001), 383–408.

    Article  MathSciNet  Google Scholar 

  13. B. Nolasco and R. Pacheco. Evolutes of plane curves and null curves in Minkowski 3-space. J. Geom. 108 (2017), 195–214.

    Article  MathSciNet  Google Scholar 

  14. P. Nurowski. Differential equations and conformal structures. J. Geom. Phys. 55:1 (2005), 19–49.

    Article  MathSciNet  Google Scholar 

  15. V. Ovsienko and S. Tabachnikov. Projective Differential Geometry Old and New: From the Schwarzian Derivative to the Cohomology of Diffeomorphism Groups. Cambridge Univ. Press, 2005.

  16. M. Salvai. Centro-affine invariants and the canonical Lorentz metric on the space of centered ellipses. Kodai Math. J. 40 (2017), 21–30.

    Article  MathSciNet  Google Scholar 

  17. P. G. Tait. Note on the circles of curvature of a plane curve. Proc. Edinburgh Math. Soc. 14 (1896), 403.

    Google Scholar 

  18. K. Wünschmann. Über Berührungsbedingungen bei Integralkurven von Differentialgleichungen. Inauguraldissertation, Leipzig, Teubner, 1905.

Download references

Acknowledgments

After the first version of this article was posted, Rui Pacheco and Marcos Salvai brought their relevant papers [13, 16] to our attention, for which we are grateful. We thank Anton Izosimov for interesting discussions and the referee for useful suggestions. GB was supported by CONACYT Grant A1-S-4588. ST was supported by NSF grant DMS-2005444.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Tabachnikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This column is a place for those bits of contagious mathematics that travel from person to person in the community, because they are so elegant, surprising, or appealing that one has an urge to pass them on.

Contributions are most welcome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bor, G., Jackman, C. & Tabachnikov, S. Variations on the Tait–Kneser Theorem. Math Intelligencer 43, 8–14 (2021). https://doi.org/10.1007/s00283-021-10119-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00283-021-10119-0

Navigation