Skip to main content

Advertisement

Log in

Th17 cells in the liver: balancing autoimmunity and pathogen defense

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

In addition to carcinogenesis, T helper 17 (Th17) cells (a subtype of CD4 + T lymphocytes) are involved in the acute, chronic, and cirrhotic phases of liver diseases; however, their role in the development and progression of liver diseases remains unclear. It is difficult to elucidate the role of Th17 cells in liver diseases due to their dichotomous nature, i.e., plasticity in terms of pathogenic or host protective function depending on environmental and time phase factors. Moreover, insufficient depletion of Th17 cells by inhibiting the cytokines and transcription factors involved in their production causes difficulties in analyzing their specific role in vitro and in vivo murine models, partially due to complex interaction. This review summarizes the recent progress in understanding the plasticity and function of hepatic Th17 cells and type 3 cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AhR:

Aryl hydrocarbon receptor

AIH :

Autoimmune hepatitis

ALD:

Alcoholic liver diseases

α-SMA:

Alpha smooth muscle actin

ANA:

Antinuclear antibodies

ASMA:

Anti-smooth muscle antibodies

αGalCer:

Alpha-galactosylceramide

BATF :

Basic leucine zipper transcription factor ATF-like

Bcl:

B-cell lymphoma

BEC:

Biliary epithelial cell

CCL:

Chemokine CC motif ligand

CCR:

Chemokine CC motif receptor

CCl4 :

Carbon tetrachloride

Con A:

Concanavalin A

CRP:

C-reactive protein

CTLA:

Cytotoxic T-lymphocyte associated antigen

CXCL:

C-X-C motif chemokine ligand

CYP:

Cytochrome P450

DMIN:

3′3-Diindolylmethane

EAE:

Experimental autoimmune encephalomyelitis

FFA:

Free fatty acid

FGF:

Fibroblast growth factor

FICZ:

6-Formylindolo[3,2-b]carbazole

FMT:

Fecal microbiota transplantation

FOXP3:

Forkhead boxprotein P3

FXR:

Farnesoid X receptor

GaIN:

D-galactosamine

GM-CSF:

Granulocyte macrophage colony-stimulating factor

GWAS:

Genome-wide association study

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HFD:

High-fat diet

HLA:

Human leukocyte antigen

HO:

Heme oxygenase

IBD:

Inflammatory bowel disease

ICAM:

Intracellular adhesion molecule

IFN:

Interferon

IL:

Interleukin

ILC:

Innate lymphoid cells

Ig:

Immunoglobulin

IRF4:

Interferon-regulatory factor 4

JAK:

Janus kinase

LC:

Liver cirrhosis

LCA:

Lithocholic acid

LPS:

Lipopolysaccharide

LSEC:

Liver sinusoidal endothelial cell

MAFLD:

Metabolic-associated fatty liver disease

MAIT:

Mucosal-associated invariant T

MAPK:

Mitogen-activated protein kinase

MCD:

Methionine–choline-deficient

MCL:

Myeloid-cell leukemia

MCP:

Monocyte chemoattractant protein

MIP:

Macrophage inflammatory protein

MMP:

Matrix metalloproteinase

MS:

Multiple sclerosis

NAFL:

Nonalcoholic fatty liver

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

NF-κB:

Nuclear factor kappa B

NK:

Natural killer

PBC:

Primary biliary cholangitis

PBMC:

Peripheral blood mononuclear cell

PSC:

Primary sclerosing cholangitis

RA:

Rheumatoid arthritis

RBP-J:

Recombination signal binding protein for immunoglobulin kappa J

Ref:

Redox factor

ROR :

Retinoic acid-related orphan receptor

SFB:

Segmented filamentous bacteria

SLE:

Systemic lupus erythematosus

STAT3:

Signal transducer and activator of transcription 3

S1P:

Sphingosine-1-phosphate

Tc:

Cytotoxic T

TGF-β:

Transforming growth factor-β

TGR5:

Takeda G protein-coupled receptor 5

Th :

Helper T

TNF:

Tumor necrosis factor

Treg:

Regulatory T

UC:

Ulcerative colitis

URI:

Unconventional prefoldin RPB5 interactor

VCAM:

Vascular cell adhesion molecule

VEGF:

Vascular endothelial growth factor

References

  1. Dong C (2008) IL-23/IL-17 biology and therapeutic considerations. J Immunotoxicol 5(1):43–46

    Article  PubMed  CAS  Google Scholar 

  2. Diveu C, McGeachy MJ, Cua DJ (2008) Cytokines that regulate autoimmunity. Curr Opin Immunol 20(6):663–668

    Article  CAS  PubMed  Google Scholar 

  3. Oo YH, Banz V, Kavanagh D, Liaskou E, Withers DR, Humphreys E, Reynolds GM, Lee-Turner L, Kalia N, Hubscher SG, Klenerman P, Eksteen B, Adams DH (2012) CXCR3-dependent recruitment and CCR6-mediated positioning of Th-17 cells in the inflamed liver. J Hepatol 57(5):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crispe IN (2009) The liver as a lymphoid organ. Annu Rev Immunol 27:147–163

    Article  CAS  PubMed  Google Scholar 

  5. Nakamoto N, Kanai T (2014) Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol 5:221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Thomson AW, Knolle PA (2010) Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 10(11):753–766

    Article  CAS  PubMed  Google Scholar 

  7. Rouvier E, Luciani MF, Mattei MG, Denizot F, Golstein P (1993) CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J Immunol 150(12):5445–5456

    CAS  PubMed  Google Scholar 

  8. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6(11):1123–1132

    Article  CAS  PubMed  Google Scholar 

  9. Tuomela S, Rautio S, Ahlfors H, Oling V, Salo V, Ullah U, Chen Z, Hamalisto S, Tripathi SK, Aijo T, Rasool O, Soueidan H, Wessels L, Stockinger B, Lahdesmaki H, Lahesmaa R (2016) Comparative analysis of human and mouse transcriptomes of Th17 cell priming. Oncotarget 7(12):13416–13428

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ivanov BS II, McKenzie L, Zhou CE, Tadokoro A, Lepelley JJ, Lafaille DJ, Cua DR (2006) Littman, The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126(6):1121–1133

    Article  CAS  PubMed  Google Scholar 

  11. Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F, Agarwal A, Huang W, Parkhurst CN, Muratet M, Newberry KM, Meadows S, Greenfield A, Yang Y, Jain P, Kirigin FK, Birchmeier C, Wagner EF, Murphy KM, Myers RM, Bonneau R, Littman DR (2012) A validated regulatory network for Th17 cell specification. Cell 151(2):289–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanaka S, Suto A, Iwamoto T, Kashiwakuma D, Kagami S, Suzuki K, Takatori H, Tamachi T, Hirose K, Onodera A, Suzuki J, Ohara O, Yamashita M, Nakayama T, Nakajima H (2014) Sox5 and c-Maf cooperatively induce Th17 cell differentiation via RORgammat induction as downstream targets of Stat3. J Exp Med 211(9):1857–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949

    Article  CAS  PubMed  Google Scholar 

  14. Jain R, Chen Y, Kanno Y, Joyce-Shaikh B, Vahedi G, Hirahara K, Blumenschein WM, Sukumar S, Haines CJ, Sadekova S, McClanahan TK, McGeachy MJ, O’Shea JJ, Cua DJ (2016) Interleukin-23-induced transcription factor blimp-1 promotes pathogenicity of T helper 17 cells. Immunity 44(1):131–142

    Article  CAS  PubMed  Google Scholar 

  15. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441(7090):235–238

    Article  CAS  PubMed  Google Scholar 

  16. Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R, Pappu B, Martin-Orozco N, Kang HS, Ma L, Panopoulos AD, Craig S, Watowich SS, Jetten AM, Tian Q, Dong C (2008) CCR6 regulates the migration of inflammatory and regulatory T cells. J Immunol 181(12):8391–8401

    Article  CAS  PubMed  Google Scholar 

  17. Wright JF, Bennett F, Li B, Brooks J, Luxenberg DP, Whitters MJ, Tomkinson KN, Fitz LJ, Wolfman NM, Collins M, Dunussi-Joannopoulos K, Chatterjee-Kishore M, Carreno BM (2008) The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol 181(4):2799–2805

    Article  CAS  PubMed  Google Scholar 

  18. Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14(9):585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cua DJ, Tato CM (2010) Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10(7):479–489

    Article  CAS  PubMed  Google Scholar 

  20. Tang XZ, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, Lee KH, Gehring AJ, De Libero G, Bertoletti A (2013) IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol 190(7):3142–3152

    Article  CAS  PubMed  Google Scholar 

  21. Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117(4):1250–1259

    Article  CAS  PubMed  Google Scholar 

  22. Walker LJ, Kang YH, Smith MO, Tharmalingham H, Ramamurthy N, Fleming VM, Sahgal N, Leslie A, Oo Y, Geremia A, Scriba TJ, Hanekom WA, Lauer GM, Lantz O, Adams DH, Powrie F, Barnes E, Klenerman P (2012) Human MAIT and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 119(2):422–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dumoutier L, Van Roost E, Colau D, Renauld JC (2000) Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc Natl Acad Sci U S A 97(18):10144–10149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dumoutier L, Van Roost E, Ameye G, Michaux L, Renauld JC (2000) IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes. Genes Immun 1(8):488–494

    Article  CAS  PubMed  Google Scholar 

  25. K.W. Moore, R. de Waal Malefyt, R.L. Coffman, A. O'Garra, Interleukin-10 and the interleukin-10 receptor, Annu Rev Immunol 19 (2001) 683–765.

  26. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109

    Article  CAS  PubMed  Google Scholar 

  27. Sabat R (2010) IL-10 family of cytokines. Cytokine Growth Factor Rev 21(5):315–324

    Article  CAS  PubMed  Google Scholar 

  28. Savage AK, Liang HE, Locksley RM (2017) The development of steady-state activation hubs between adult LTi ILC3s and primed macrophages in small intestine. J Immunol 199(5):1912–1922

    Article  CAS  PubMed  Google Scholar 

  29. Wolk K, Kunz S, Witte E, Friedrich M, Asadullah K, Sabat R (2004) IL-22 increases the innate immunity of tissues. Immunity 21(2):241–254

    Article  CAS  PubMed  Google Scholar 

  30. Rutz S, Wang X, Ouyang W (2014) The IL-20 subfamily of cytokines–from host defence to tissue homeostasis. Nat Rev Immunol 14(12):783–795

    Article  CAS  PubMed  Google Scholar 

  31. Sonnenberg GF, Fouser LA, Artis D (2011) Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 12(5):383–390

    Article  CAS  PubMed  Google Scholar 

  32. Rutz S, Noubade R, Eidenschenk C, Ota N, Zeng W, Zheng Y, Hackney J, Ding J, Singh H, Ouyang W (2011) Transcription factor c-Maf mediates the TGF-beta-dependent suppression of IL-22 production in T(H)17 cells. Nat Immunol 12(12):1238–1245

    Article  CAS  PubMed  Google Scholar 

  33. Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP, Pestka S (2001) Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J Biol Chem 276(4):2725–2732

    Article  CAS  PubMed  Google Scholar 

  34. Xie MH, Aggarwal S, Ho WH, Foster J, Zhang Z, Stinson J, Wood WI, Goddard AD, Gurney AL (2000) Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem 275(40):31335–31339

    Article  CAS  PubMed  Google Scholar 

  35. Dudakov JA, Hanash AM, van den Brink MR (2015) Interleukin-22: immunobiology and pathology. Annu Rev Immunol 33:747–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. P.R. Burkett, G. Meyer zu Horste, V.K. Kuchroo, Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity, The Journal of clinical investigation 125(6) (2015) 2211–9.

  37. Zielinski CE, Mele F, Aschenbrenner D, Jarrossay D, Ronchi F, Gattorno M, Monticelli S, Lanzavecchia A, Sallusto F (2012) Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484(7395):514–518

    Article  CAS  PubMed  Google Scholar 

  38. Duhen T, Campbell DJ (2014) IL-1beta promotes the differentiation of polyfunctional human CCR6+CXCR3+ Th1/17 cells that are specific for pathogenic and commensal microbes. J Immunol 193(1):120–129

    Article  CAS  PubMed  Google Scholar 

  39. Sujino T, Kanai T, Ono Y, Mikami Y, Hayashi A, Doi T, Matsuoka K, Hisamatsu T, Takaishi H, Ogata H, Yoshimura A, Littman DR, Hibi T (2011) Regulatory T cells suppress development of colitis, blocking differentiation of T-helper 17 into alternative T-helper 1 cells. Gastroenterology 141(3):1014–1023

    Article  CAS  PubMed  Google Scholar 

  40. L. Cosmi, L. Maggi, V. Santarlasci, M. Capone, E. Cardilicchia, F. Frosali, V. Querci, R. Angeli, A. Matucci, M. Fambrini, F. Liotta, P. Parronchi, E. Maggi, S. Romagnani, F. Annunziato, Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4, J Allergy Clin Immunol 125(1) (2010) 222–30 e1–4.

  41. Stritesky GL, Yeh N, Kaplan MH (2008) IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol 181(9):5948–5955

    Article  CAS  PubMed  Google Scholar 

  42. Basu R, Hatton RD, Weaver CT (2013) The Th17 family: flexibility follows function. Immunol Rev 252(1):89–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT (2009) Late developmental plasticity in the T helper 17 lineage. Immunity 30(1):92–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E, Romagnani S (2007) Phenotypic and functional features of human Th17 cells. J Exp Med 204(8):1849–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278(3):1910–1914

    Article  CAS  PubMed  Google Scholar 

  46. Ahern PP, Schiering C, Buonocore S, McGeachy MJ, Cua DJ, Maloy KJ, Powrie F (2010) Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33(2):279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, Garefalaki A, Potocnik AJ, Stockinger B (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12(3):255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Onishi RM, Gaffen SL (2010) Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517

    Article  CAS  PubMed  Google Scholar 

  50. Tesmer LA, Lundy SK, Sarkar S, Fox DA (2008) Th17 cells in human disease. Immunol Rev 223:87–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lafdil F, Miller AM, Ki SH, Gao B (2010) Th17 cells and their associated cytokines in liver diseases. Cell Mol Immunol 7(4):250–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hernandez-Santos N, Huppler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL (2013) Th17 cells confer long-term adaptive immunity to oral mucosal Candida albicans infections. Mucosal Immunol 6(5):900–910

    Article  CAS  PubMed  Google Scholar 

  53. Chen K, Kolls JK (2013) T cell-mediated host immune defenses in the lung. Annu Rev Immunol 31:605–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Conti HR, Gaffen SL (2015) IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. J Immunol 195(3):780–788

    Article  CAS  PubMed  Google Scholar 

  55. Drummond RA, Lionakis MS (2019) Organ-specific mechanisms linking innate and adaptive antifungal immunity. Semin Cell Dev Biol 89:78–90

    Article  CAS  PubMed  Google Scholar 

  56. J. Li, J.L. Casanova, A. Puel, Mucocutaneous IL-17 immunity in mice and humans: host defense vs. excessive inflammation, Mucosal Immunol 11(3) (2018) 581–589.

  57. Hamada S, Umemura M, Shiono T, Tanaka K, Yahagi A, Begum MD, Oshiro K, Okamoto Y, Watanabe H, Kawakami K, Roark C, Born WK, O’Brien R, Ikuta K, Ishikawa H, Nakae S, Iwakura Y, Ohta T, Matsuzaki G (2008) IL-17A produced by gammadelta T cells plays a critical role in innate immunity against listeria monocytogenes infection in the liver. J Immunol 181(5):3456–3463

    Article  CAS  PubMed  Google Scholar 

  58. Schulz SM, Kohler G, Holscher C, Iwakura Y, Alber G (2008) IL-17A is produced by Th17, gammadelta T cells and other CD4- lymphocytes during infection with Salmonella enterica serovar Enteritidis and has a mild effect in bacterial clearance. Int Immunol 20(9):1129–1138

    Article  CAS  PubMed  Google Scholar 

  59. C. Wang, N. Yosef, J. Gaublomme, C. Wu, Y. Lee, C.B. Clish, J. Kaminski, S. Xiao, G. Meyer Zu Horste, M. Pawlak, Y. Kishi, N. Joller, K. Karwacz, C. Zhu, M. Ordovas-Montanes, A. Madi, I. Wortman, T. Miyazaki, R.A. Sobel, H. Park, A. Regev, V.K. Kuchroo, CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity, Cell 163(6) (2015) 1413–27.

  60. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181

    Article  CAS  PubMed  Google Scholar 

  61. Evans HG, Roostalu U, Walter GJ, Gullick NJ, Frederiksen KS, Roberts CA, Sumner J, Baeten DL, Gerwien JG, Cope AP, Geissmann F, Kirkham BW, Taams LS (2014) TNF-alpha blockade induces IL-10 expression in human CD4+ T cells. Nat Commun 5:3199

    Article  PubMed  CAS  Google Scholar 

  62. Esplugues E, Huber S, Gagliani N, Hauser AE, Town T, Wan YY, O’Connor W Jr, Rongvaux A, Van Rooijen N, Haberman AM, Iwakura Y, Kuchroo VK, Kolls JK, Bluestone JA, Herold KC, Flavell RA (2011) Control of TH17 cells occurs in the small intestine. Nature 475(7357):514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B, Herbert DR, Bulfone A, Trentini F, Di Serio C, Bacchetta R, Andreani M, Brockmann L, Gregori S, Flavell RA, Roncarolo MG (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19(6):739–746

    Article  CAS  PubMed  Google Scholar 

  64. Bhaumik S, Basu R (2017) Cellular and molecular dynamics of Th17 differentiation and its developmental plasticity in the intestinal immune response. Front Immunol 8:254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Wang C, Collins M, Kuchroo VK (2015) Effector T cell differentiation: are master regulators of effector T cells still the masters? Curr Opin Immunol 37:6–10

    Article  PubMed  CAS  Google Scholar 

  66. Shabgah AG, Navashenaq JG, Shabgah OG, Mohammadi H, Sahebkar A (2017) Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev 16(12):1209–1218

    Article  CAS  PubMed  Google Scholar 

  67. Xiang X, Feng D, Hwang S, Ren T, Wang X, Trojnar E, Matyas C, Mo R, Shang D, He Y, Seo W, Shah VH, Pacher P, Xie Q, Gao B (2020) Interleukin-22 ameliorates acute-on-chronic liver failure by reprogramming impaired regeneration pathways in mice. J Hepatol 72(4):736–745

    Article  CAS  PubMed  Google Scholar 

  68. Yasumi Y, Takikawa Y, Endo R, Suzuki K (2007) Interleukin-17 as a new marker of severity of acute hepatic injury, Hepatology research : the official journal of the Japan Society of. Hepatology 37(4):248–254

    Article  CAS  Google Scholar 

  69. Lai R, Xiang X, Mo R, Bao R, Wang P, Guo S, Zhao G, Gui H, Wang H, Bao S, Xie Q (2015) Protective effect of Th22 cells and intrahepatic IL-22 in drug induced hepatocellular injury. J Hepatol 63(1):148–155

    Article  CAS  PubMed  Google Scholar 

  70. Beringer A, Miossec P (2018) IL-17 and IL-17-producing cells and liver diseases, with focus on autoimmune liver diseases. Autoimmun Rev 17(12):1176–1185

    Article  CAS  PubMed  Google Scholar 

  71. Gaffen SL (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9(8):556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. L. Zhao, Y. Tang, Z. You, Q. Wang, S. Liang, X. Han, D. Qiu, J. Wei, Y. Liu, L. Shen, X. Chen, Y. Peng, Z. Li, X. Ma, Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression, PloS one 6(4) (2011) e18909.

  73. Patel DN, King CA, Bailey SR, Holt JW, Venkatachalam K, Agrawal A, Valente AJ, Chandrasekar B (2007) Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation. J Biol Chem 282(37):27229–27238

    Article  CAS  PubMed  Google Scholar 

  74. F. Meng, K. Wang, T. Aoyama, S.I. Grivennikov, Y. Paik, D. Scholten, M. Cong, K. Iwaisako, X. Liu, M. Zhang, C.H. Osterreicher, F. Stickel, K. Ley, D.A. Brenner, T. Kisseleva, Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice, Gastroenterology 143(3) (2012) 765–776 e3.

  75. Amara S, Lopez K, Banan B, Brown SK, Whalen M, Myles E, Ivy MT, Johnson T, Schey KL, Tiriveedhi V (2015) Synergistic effect of pro-inflammatory TNFalpha and IL-17 in periostin mediated collagen deposition: potential role in liver fibrosis. Mol Immunol 64(1):26–35

    Article  CAS  PubMed  Google Scholar 

  76. Harada K, Shimoda S, Sato Y, Isse K, Ikeda H, Nakanuma Y (2009) Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin Exp Immunol 157(2):261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang Q, Chu S, Yin X, Yu X, Kang C, Li X, Qiu Y (2016) Interleukin-17A-induced epithelial-mesenchymal transition of human intrahepatic biliary epithelial cells: implications for primary biliary cirrhosis. Tohoku J Exp Med 240(4):269–275

    Article  CAS  PubMed  Google Scholar 

  78. H.C. Jeffery, S. Hunter, E.H. Humphreys, R. Bhogal, R.E. Wawman, J. Birtwistle, M. Atif, C.J. Bagnal, G. Rodriguez Blanco, N. Richardson, S. Warner, W.B. Dunn, S.C. Afford, D.H. Adams, Y.H. Oo, Bidirectional cross-talk between biliary epithelium and Th17 Cells promotes local Th17 expansion and bile duct proliferation in biliary liver diseases, J Immunol 203(5) (2019) 1151–1159.

  79. Heymann F, Tacke F (2016) Immunology in the liver–from homeostasis to disease. Nat Rev Gastroenterol Hepatol 13(2):88–110

    Article  CAS  PubMed  Google Scholar 

  80. F. Lafdil, H. Wang, O. Park, W. Zhang, Y. Moritoki, S. Yin, X.Y. Fu, M.E. Gershwin, Z.X. Lian, B. Gao, Myeloid STAT3 inhibits T cell-mediated hepatitis by regulating T helper 1 cytokine and interleukin-17 production, Gastroenterology 137(6) (2009) 2125–35 e1–2.

  81. Zhang Y, Wang X, Zhong M, Zhang M, Suo Q, Lv K (2013) MicroRNA let-7a ameliorates con A-induced hepatitis by inhibiting IL-6-dependent Th17 cell differentiation. J Clin Immunol 33(3):630–639

    Article  CAS  PubMed  Google Scholar 

  82. Yan S, Wang L, Liu N, Wang Y, Chu Y (2012) Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol 90(4):421–428

    Article  CAS  PubMed  Google Scholar 

  83. Xu M, Morishima N, Mizoguchi I, Chiba Y, Fujita K, Kuroda M, Iwakura Y, Cua DJ, Yasutomo K, Mizuguchi J, Yoshimoto T (2011) Regulation of the development of acute hepatitis by IL-23 through IL-22 and IL-17 production. Eur J Immunol 41(10):2828–2839

    Article  CAS  PubMed  Google Scholar 

  84. Furuya S, Kono H, Hara M, Hirayama K, Sun C, Fujii H (2015) Interleukin 17A plays a role in lipopolysaccharide/D-galactosamine-induced fulminant hepatic injury in mice. J Surg Res 199(2):487–493

    Article  CAS  PubMed  Google Scholar 

  85. Wondimu Z, Santodomingo-Garzon T, Le T, Swain MG (2010) Protective role of interleukin-17 in murine NKT cell-driven acute experimental hepatitis. Am J Pathol 177(5):2334–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Radaeva S, Sun R, Pan HN, Hong F, Gao B (2004) Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology 39(5):1332–1342

    Article  CAS  PubMed  Google Scholar 

  87. Wahl C, Wegenka UM, Leithauser F, Schirmbeck R, Reimann J (2009) IL-22-dependent attenuation of T cell-dependent (ConA) hepatitis in herpes virus entry mediator deficiency. J Immunol 182(8):4521–4528

    Article  CAS  PubMed  Google Scholar 

  88. Pan H, Hong F, Radaeva S, Gao B (2004) Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell Mol Immunol 1(1):43–49

    CAS  PubMed  Google Scholar 

  89. Park O, Wang H, Weng H, Feigenbaum L, Li H, Yin S, Ki SH, Yoo SH, Dooley S, Wang FS, Young HA, Gao B (2011) In vivo consequences of liver-specific interleukin-22 expression in mice: implications for human liver disease progression. Hepatology 54(1):252–261

    Article  PubMed  CAS  Google Scholar 

  90. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA (2007) Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27(4):647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gialitakis M, Tolaini M, Li Y, Pardo M, Yu L, Toribio A, Choudhary JS, Niakan K, Papayannopoulos V, Stockinger B (2017) Activation of the aryl hydrocarbon receptor interferes with early embryonic development. Stem Cell Reports 9(5):1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Poland A, Glover E, Kende AS (1976) Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase, J Biol Chem 251(16):4936–4946

    CAS  PubMed  Google Scholar 

  93. Poland A, Knutson JC (1982) 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol 22:517–554

    Article  CAS  PubMed  Google Scholar 

  94. Ema M, Sogawa K, Watanabe N, Chujoh Y, Matsushita N, Gotoh O, Funae Y, Fujii-Kuriyama Y (1992) cDNA cloning and structure of mouse putative Ah receptor. Biochem Biophys Res Commun 184(1):246–253

    Article  CAS  PubMed  Google Scholar 

  95. Hubbard TD, Murray IA, Perdew GH (2015) Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos 43(10):1522–1535

    Article  PubMed  PubMed Central  Google Scholar 

  96. Murray IA, Patterson AD, Perdew GH (2014) Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nat Rev Cancer 14(12):801–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. A. Matsumoto, T. Kanai, Y. Mikami, P.S. Chu, N. Nakamoto, H. Ebinuma, H. Saito, T. Sato, H. Yagita, T. Hibi, IL-22-producing RORgammat-dependent innate lymphoid cells play a novel protective role in murine acute hepatitis, PLoS One 8(4) (2013) e62853.

  98. M.L. Balmer, E. Slack, A. de Gottardi, M.A. Lawson, S. Hapfelmeier, L. Miele, A. Grieco, H. Van Vlierberghe, R. Fahrner, N. Patuto, C. Bernsmeier, F. Ronchi, M. Wyss, D. Stroka, N. Dickgreber, M.H. Heim, K.D. McCoy, A.J. Macpherson, The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota, Sci Transl Med 6(237) (2014) 237ra66.

  99. Y. Mikami, S. Mizuno, N. Nakamoto, A. Hayashi, T. Sujino, T. Sato, N. Kamada, K. Matsuoka, T. Hisamatsu, H. Ebinuma, T. Hibi, A. Yoshimura, T. Kanai, Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation, PLoS One 9(1) (2014) e84619.

  100. N. Taniki, N. Nakamoto, P.S. Chu, Y. Mikami, T. Amiya, T. Teratani, T. Suzuki, T. Tsukimi, S. Fukuda, A. Yamaguchi, S. Shiba, R. Miyake, T. Katayama, H. Ebinuma, T. Kanai, Intestinal barrier regulates immune responses in the liver via IL-10-producing macrophages, JCI Insight 3(12) (2018).

  101. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N, Grainger JR, Chen Q, Kanno Y, Watford WT, Sun HW, Eberl G, Shevach EM, Belkaid Y, Cua DJ, Chen W, O’Shea JJ (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467(7318):967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N (2013) Host interactions with segmented filamentous bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 25(5):342–351

    Article  CAS  PubMed  Google Scholar 

  103. V. Patel, S. Lee, M. McPhail, K. Da Silva, S. Guilly, A. Zamalloa, E. Witherden, S. Stoy, G.K. Manakkat Vijay, N. Pons, N. Galleron, X. Huang, S. Gencer, M. Coen, T.H. Tranah, J.A. Wendon, K. Bruce, E. Le Chatelier, S.D. Ehrlich, L.A. Edwards, S. Shoaie, D.L. Shawcross, Rifaximin reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial, J Hepatol (2021).

  104. L. Craven, A. Rahman, S. Nair Parvathy, M. Beaton, J. Silverman, K. Qumosani, I. Hramiak, R. Hegele, T. Joy, J. Meddings, B. Urquhart, R. Harvie, C. McKenzie, K. Summers, G. Reid, J.P. Burton, M. Silverman, Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial, Am J Gastroenterol 115(7) (2020) 1055–1065.

  105. H.J. Wu, Ivanov, II, J. Darce, K. Hattori, T. Shima, Y. Umesaki, D.R. Littman, C. Benoist, D. Mathis, Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells, Immunity 32(6) (2010) 815–27.

  106. S.G. de Aquino, S. Abdollahi-Roodsaz, M.I. Koenders, F.A. van de Loo, G.J. Pruijn, R.J. Marijnissen, B. Walgreen, M.M. Helsen, L.A. van den Bersselaar, R.S. de Molon, M.J. Avila Campos, F.Q. Cunha, J.A. Cirelli, W.B. van den Berg, Periodontal pathogens directly promote autoimmune experimental arthritis by inducing a TLR2- and IL-1-driven Th17 response, Journal of immunology 192(9) (2014) 4103–11.

  107. Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, Hirota K, Matsushita M, Furuta Y, Narazaki M, Sakaguchi N, Kayama H, Nakamura S, Iida T, Saeki Y, Kumanogoh A, Sakaguchi S, Takeda K (2016) Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol 68(11):2646–2661

    Article  CAS  PubMed  Google Scholar 

  108. Marietta EV, Murray JA, Luckey DH, Jeraldo PR, Lamba A, Patel R, Luthra HS, Mangalam A, Taneja V (2016) Suppression of inflammatory arthritis by human gut-derived prevotella histicola in humanized mice. Arthritis Rheumatol 68(12):2878–2888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. C.P. Bradley, F. Teng, K.M. Felix, T. Sano, D. Naskar, K.E. Block, H. Huang, K.S. Knox, D.R. Littman, H.J. Wu, Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs, Cell host & microbe 22(5) (2017) 697–704 e4.

  110. D. Yang, X. Chen, J. Wang, Q. Lou, Y. Lou, L. Li, H. Wang, J. Chen, M. Wu, X. Song, Y. Qian, Dysregulated Lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles, Immunity 50(3) (2019) 692–706 e7.

  111. Asquith MJ, Stauffer P, Davin S, Mitchell C, Lin P, Rosenbaum JT (2016) Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol 68(9):2151–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mangalam A, Shahi SK, Luckey D, Karau M, Marietta E, Luo N, Choung RS, Ju J, Sompallae R, Gibson-Corley K, Patel R, Rodriguez M, David C, Taneja V, Murray J (2017) Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep 20(6):1269–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Onderdonk AB, Delaney ML, Fichorova RN (2016) The human microbiome during bacterial vaginosis. Clin Microbiol Rev 29(2):223–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU, Bamberg K, Angelin B, Hyotylainen T, Oresic M, Backhed F (2013) Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17(2):225–235

    Article  CAS  PubMed  Google Scholar 

  115. Wahlstrom A, Sayin SI, Marschall HU, Backhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50

    Article  PubMed  CAS  Google Scholar 

  116. Fiorucci S, Biagioli M, Zampella A, Distrutti E (2018) Bile acids activated receptors regulate innate immunity. Front Immunol 9:1853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. O’Brien KM, Allen KM, Rockwell CE, Towery K, Luyendyk JP, Copple BL (2013) IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am J Pathol 183(5):1498–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Soroosh P, Wu J, Xue X, Song J, Sutton SW, Sablad M, Yu J, Nelen MI, Liu X, Castro G, Luna R, Crawford S, Banie H, Dandridge RA, Deng X, Bittner A, Kuei C, Tootoonchi M, Rozenkrants N, Herman K, Gao J, Yang XV, Sachen K, Ngo K, Fung-Leung WP, Nguyen S, de Leon-Tabaldo A, Blevitt J, Zhang Y, Cummings MD, Rao T, Mani NS, Liu C, McKinnon M, Milla ME, Fourie AM, Sun S (2014) Oxysterols are agonist ligands of RORgammat and drive Th17 cell differentiation. Proc Natl Acad Sci U S A 111(33):12163–12168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, Zheng Y, Longman RS, Rastinejad F, Devlin AS, Krout MR, Fischbach MA, Littman DR, Huh JR (2019) Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576(7785):143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gu YZ, Hogenesch JB, Bradfield CA (2000) The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40:519–561

    Article  CAS  PubMed  Google Scholar 

  121. Stockinger B, Di Meglio P, Gialitakis M, Duarte JH (2014) The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 32:403–432

    Article  CAS  PubMed  Google Scholar 

  122. Ciolino HP, Daschner PJ, Wang TT, Yeh GC (1998) Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 56(2):197–206

    Article  CAS  PubMed  Google Scholar 

  123. Wanner R, Brommer S, Czarnetzki BM, Rosenbach T (1995) The differentiation-related upregulation of aryl hydrocarbon receptor transcript levels is suppressed by retinoic acid. Biochem Biophys Res Commun 209(2):706–711

    Article  CAS  PubMed  Google Scholar 

  124. Phelan D, Winter GM, Rogers WJ, Lam JC, Denison MS (1998) Activation of the Ah receptor signal transduction pathway by bilirubin and biliverdin. Arch Biochem Biophys 357(1):155–163

    Article  CAS  PubMed  Google Scholar 

  125. Abron JD, Singh NP, Mishra MK, Price RL, Nagarkatti M, Nagarkatti PS, Singh UP (2018) An endogenous aryl hydrocarbon receptor ligand, ITE, induces regulatory T cells and ameliorates experimental colitis. Am J Physiol Gastrointest Liver Physiol 315(2):G220–G230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. A. Abdullah, M. Maged, M.I. Hairul-Islam, I.A. Osama, H. Maha, A. Manal, H. Hamza, Activation of aryl hydrocarbon receptor signaling by a novel agonist ameliorates autoimmune encephalomyelitis, PloS one 14(4) (2019) e0215981.

  127. Nebert DW (2017) Aryl hydrocarbon receptor (AHR): “pioneer member” of the basic-helix/loop/helix per-Arnt-sim (bHLH/PAS) family of “sensors” of foreign and endogenous signals. Prog Lipid Res 67:38–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453(7191):65–71

    Article  CAS  PubMed  Google Scholar 

  129. Veldhoen M, Hirota K, Westendorf AM, Buer J, Dumoutier L, Renauld JC, Stockinger B (2008) The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453(7191):106–109

    Article  CAS  PubMed  Google Scholar 

  130. Veldhoen M, Hirota K, Christensen J, O’Garra A, Stockinger B (2009) Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J Exp Med 206(1):43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nakahama T, Kimura A, Nguyen NT, Chinen I, Hanieh H, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2011) Aryl hydrocarbon receptor deficiency in T cells suppresses the development of collagen-induced arthritis. Proc Natl Acad Sci U S A 108(34):14222–14227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX, Zhou L (2012) The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36(1):92–104

    Article  CAS  PubMed  Google Scholar 

  133. Yang XP, Ghoreschi K, Steward-Tharp SM, Rodriguez-Canales J, Zhu J, Grainger JR, Hirahara K, Sun HW, Wei L, Vahedi G, Kanno Y, O’Shea JJ, Laurence A (2011) Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 12(3):247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Alam MS, Maekawa Y, Kitamura A, Tanigaki K, Yoshimoto T, Kishihara K, Yasutomo K (2010) Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 107(13):5943–5948

    Article  PubMed  PubMed Central  Google Scholar 

  135. Liu Y, She W, Wang F, Li J, Wang J, Jiang W (2014) 3, 3’-Diindolylmethane alleviates steatosis and the progression of NASH partly through shifting the imbalance of Treg/Th17 cells to Treg dominance. Int Immunopharmacol 23(2):489–498

    Article  CAS  PubMed  Google Scholar 

  136. Shen H, Shi LZ (2019) Metabolic regulation of TH17 cells. Mol Immunol 109:81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Park J, Kim M, Kang SG, Jannasch AH, Cooper B, Patterson J, Kim CH (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 8(1):80–93

    Article  CAS  PubMed  Google Scholar 

  138. Hu X, Wang Y, Hao LY, Liu X, Lesch CA, Sanchez BM, Wendling JM, Morgan RW, Aicher TD, Carter LL, Toogood PL, Glick GD (2015) Corrigendum: sterol metabolism controls TH17 differentiation by generating endogenous RORgamma agonists. Nat Chem Biol 11(9):741

    Article  CAS  PubMed  Google Scholar 

  139. Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP, Marbois BN, Komisopoulou E, Wilson EB, Osborne TF, Graeber TG, Reue K, Brooks DG, Bensinger SJ (2013) Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 14(5):489–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. J.Y. Kim, R. Garcia-Carbonell, S. Yamachika, P. Zhao, D. Dhar, R. Loomba, R.J. Kaufman, A.R. Saltiel, M. Karin, ER Stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P, Cell 175(1) (2018) 133–145 e15.

  141. Ma HY, Yamamoto G, Xu J, Liu X, Karin D, Kim JY, Alexandrov LB, Koyama Y, Nishio T, Benner C, Heinz S, Rosenthal SB, Liang S, Sun M, Karin G, Zhao P, Brodt P, McKillop IH, Quehenberger O, Dennis E, Saltiel A, Tsukamoto H, Gao B, Karin M, Brenner DA, Kisseleva T (2020) IL-17 signaling in steatotic hepatocytes and macrophages promotes hepatocellular carcinoma in alcohol-related liver disease. J Hepatol 72(5):946–959

    Article  CAS  PubMed  Google Scholar 

  142. Cui G, Qin X, Wu L, Zhang Y, Sheng X, Yu Q, Sheng H, Xi B, Zhang JZ, Zang YQ (2011) Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Investig 121(2):658–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Karmaus PWF, Chen X, Lim SA, Herrada AA, Nguyen TM, Xu B, Dhungana Y, Rankin S, Chen W, Rosencrance C, Yang K, Fan Y, Cheng Y, Easton J, Neale G, Vogel P, Chi H (2019) Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature 565(7737):101–105

    Article  CAS  PubMed  Google Scholar 

  144. Haghikia A, Jorg S, Duscha A, Berg J, Manzel A, Waschbisch A, Hammer A, Lee DH, May C, Wilck N, Balogh A, Ostermann AI, Schebb NH, Akkad DA, Grohme DA, Kleinewietfeld M, Kempa S, Thone J, Demir S, Muller DN, Gold R, Linker RA (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43(4):817–829

    Article  CAS  PubMed  Google Scholar 

  145. Allen MJ, Fan YY, Monk JM, Hou TY, Barhoumi R, McMurray DN, Chapkin RS (2014) n-3 PUFAs reduce T-helper 17 cell differentiation by decreasing responsiveness to interleukin-6 in isolated mouse splenic CD4(+) T cells. J Nutr 144(8):1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dejani NN, Orlando AB, Nino VE, Penteado LA, Verdan FF, Bazzano JMR, Codo AC, Salina ACG, Saraiva AC, Avelar MR, Spolidorio LC, Serezani CH, Medeiros AI (2018) Intestinal host defense outcome is dictated by PGE2 production during efferocytosis of infected cells. Proc Natl Acad Sci U S A 115(36):E8469–E8478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kachler K, Bailer M, Heim L, Schumacher F, Reichel M, Holzinger CD, Trump S, Mittler S, Monti J, Trufa DI, Rieker RJ, Hartmann A, Sirbu H, Kleuser B, Kornhuber J, Finotto S (2017) Enhanced acid sphingomyelinase activity drives immune evasion and tumor growth in non-small cell lung carcinoma. Can Res 77(21):5963–5976

    Article  CAS  Google Scholar 

  148. Thomas K, Sehr T, Proschmann U, Rodriguez-Leal FA, Haase R, Ziemssen T (2017) Fingolimod additionally acts as immunomodulator focused on the innate immune system beyond its prominent effects on lymphocyte recirculation. J Neuroinflammation 14(1):41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. M.O. Johnson, M.M. Wolf, M.Z. Madden, G. Andrejeva, A. Sugiura, D.C. Contreras, D. Maseda, M.V. Liberti, K. Paz, R.J. Kishton, M.E. Johnson, A.A. de Cubas, P. Wu, G. Li, Y. Zhang, D.C. Newcomb, A.D. Wells, N.P. Restifo, W.K. Rathmell, J.W. Locasale, M.L. Davila, B.R. Blazar, J.C. Rathmell, Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism, Cell 175(7) (2018) 1780–1795 e19.

  150. Seto WK, Lo YR, Pawlotsky JM, Yuen MF (2018) Chronic hepatitis B virus infection. Lancet 392(10161):2313–2324

    Article  PubMed  Google Scholar 

  151. Spearman CW, Dusheiko GM, Hellard M, Sonderup M (2019) Hepatitis C. Lancet 394(10207):1451–1466

    Article  PubMed  Google Scholar 

  152. Chang Q, Wang YK, Zhao Q, Wang CZ, Hu YZ, Wu BY (2012) Th17 cells are increased with severity of liver inflammation in patients with chronic hepatitis C. J Gastroenterol Hepatol 27(2):273–278

    Article  CAS  PubMed  Google Scholar 

  153. Ge J, Wang K, Meng QH, Qi ZX, Meng FL, Fan YC (2010) Implication of Th17 and Th1 cells in patients with chronic active hepatitis B. J Clin Immunol 30(1):60–67

    Article  CAS  PubMed  Google Scholar 

  154. D. Feng, X. Kong, H. Weng, O. Park, H. Wang, S. Dooley, M.E. Gershwin, B. Gao, Interleukin-22 promotes proliferation of liver stem/progenitor cells in mice and patients with chronic hepatitis B virus infection, Gastroenterology 143(1) (2012) 188–98 e7.

  155. Zhang Y, Cobleigh MA, Lian JQ, Huang CX, Booth CJ, Bai XF, Robek MD (2011) A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology 141(5):1897–1906

    Article  CAS  PubMed  Google Scholar 

  156. Zhang JY, Zhang Z, Lin F, Zou ZS, Xu RN, Jin L, Fu JL, Shi F, Shi M, Wang HF, Wang FS (2010) Interleukin-17-producing CD4(+) T cells increase with severity of liver damage in patients with chronic hepatitis B. Hepatology 51(1):81–91

    Article  CAS  PubMed  Google Scholar 

  157. Sun HQ, Zhang JY, Zhang H, Zou ZS, Wang FS, Jia JH (2012) Increased Th17 cells contribute to disease progression in patients with HBV-associated liver cirrhosis. J Viral Hepatitis 19(6):396–403

    Article  CAS  Google Scholar 

  158. Du WJ, Zhen JH, Zeng ZQ, Zheng ZM, Xu Y, Qin LY, Chen SJ (2013) Expression of interleukin-17 associated with disease progression and liver fibrosis with hepatitis B virus infection: IL-17 in HBV infection. Diagn Pathol 8:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang J, Liu Y, Xie L, Li S, Qin X (2016) Association of IL-17A and IL-17F gene polymorphisms with chronic hepatitis B and hepatitis B virus-related liver cirrhosis in a Chinese population: a case-control study. Clin Res Hepatol Gastroenterol 40(3):288–296

    Article  CAS  PubMed  Google Scholar 

  160. Sertorio M, Hou X, Carmo RF, Dessein H, Cabantous S, Abdelwahed M, Romano A, Albuquerque F, Vasconcelos L, Carmo T, Li J, Varoquaux A, Arnaud V, Oliveira P, Hamdoun A, He H, Adbelmaboud S, Mergani A, Zhou J, Monis A, Pereira LB, Halfon P, Bourliere M, Parana R, Dos Reis M, Gonnelli D, Moura P, Elwali NE, Argiro L, Li Y, Dessein A (2015) IL-22 and IL-22 binding protein (IL-22BP) regulate fibrosis and cirrhosis in hepatitis C virus and schistosome infections. Hepatology 61(4):1321–1331

    Article  CAS  PubMed  Google Scholar 

  161. Wu LY, Liu S, Liu Y, Guo C, Li H, Li W, Jin X, Zhang K, Zhao P, Wei L, Zhao J (2015) Up-regulation of interleukin-22 mediates liver fibrosis via activating hepatic stellate cells in patients with hepatitis C. Clin Immunol 158(1):77–87

    Article  CAS  PubMed  Google Scholar 

  162. Diehl AM, Day C (2017) Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 377(21):2063–2072

    Article  CAS  PubMed  Google Scholar 

  163. Siddique O, Joseph-Talreja M, Yoo ER, Perumpail RB, Cholankeril G, Harrison SA, Younossi ZM, Wong RJ, Ahmed A (2017) Rising rate of liver transplantation in the baby boomer generation with non-alcoholic steatohepatitis in the United States. J Clin Transl Hepatol 5(3):193–196

    PubMed  PubMed Central  Google Scholar 

  164. He B, Wu L, Xie W, Shao Y, Jiang J, Zhao Z, Yan M, Chen Z, Cui D (2017) The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol 18(1):33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Nati M, Haddad D, Birkenfeld AL, Koch CA, Chavakis T, Chatzigeorgiou A (2016) The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord 17(1):29–39

    Article  CAS  PubMed  Google Scholar 

  166. Rau M, Schilling AK, Meertens J, Hering I, Weiss J, Jurowich C, Kudlich T, Hermanns HM, Bantel H, Beyersdorf N, Geier A (2016) Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol 196(1):97–105

    Article  CAS  PubMed  Google Scholar 

  167. Tang Y, Bian Z, Zhao L, Liu Y, Liang S, Wang Q, Han X, Peng Y, Chen X, Shen L, Qiu D, Li Z, Ma X (2011) Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin Exp Immunol 166(2):281–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. M.E. Moreno-Fernandez, D.A. Giles, J.R. Oates, C.C. Chan, M. Damen, J.R. Doll, T.E. Stankiewicz, X. Chen, K. Chetal, R. Karns, M.T. Weirauch, L. Romick-Rosendale, S.A. Xanthakos, R. Sheridan, S. Szabo, A.S. Shah, M.A. Helmrath, T.H. Inge, H. Deshmukh, N. Salomonis, S. Divanovic, PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease, Cell Metab 33(6) (2021) 1187–1204 e9.

  169. Gomes AL, Teijeiro A, Buren S, Tummala KS, Yilmaz M, Waisman A, Theurillat JP, Perna C, Djouder N (2016) Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30(1):161–175

    Article  CAS  PubMed  Google Scholar 

  170. Zai W, Chen W, Wu Z, Jin X, Fan J, Zhang X, Luan J, Tang S, Mei X, Hao Q, Liu H, Ju D (2019) Targeted interleukin-22 gene delivery in the liver by polymetformin and penetratin-based hybrid nanoparticles to treat nonalcoholic fatty liver disease. ACS Appl Mater Interfaces 11(5):4842–4857

    Article  CAS  PubMed  Google Scholar 

  171. Yang L, Zhang Y, Wang L, Fan F, Zhu L, Li Z, Ruan X, Huang H, Wang Z, Huang Z, Huang Y, Yan X, Chen Y (2010) Amelioration of high fat diet induced liver lipogenesis and hepatic steatosis by interleukin-22. J Hepatol 53(2):339–347

    Article  CAS  PubMed  Google Scholar 

  172. Ma HY, Xu J, Liu X, Zhu Y, Gao B, Karin M, Tsukamoto H, Jeste DV, Grant I, Roberts AJ, Contet C, Geoffroy C, Zheng B, Brenner D, Kisseleva T (2016) The role of IL-17 signaling in regulation of the liver-brain axis and intestinal permeability in alcoholic liver disease. Curr Pathobiol Rep 4(1):27–35

    Article  PubMed  PubMed Central  Google Scholar 

  173. J. Xu, H.Y. Ma, X. Liu, S. Rosenthal, J. Baglieri, R. McCubbin, M. Sun, Y. Koyama, C.G. Geoffroy, K. Saijo, L. Shang, T. Nishio, I. Maricic, M. Kreifeldt, P. Kusumanchi, A. Roberts, B. Zheng, V. Kumar, K. Zengler, D.P. Pizzo, M. Hosseini, C. Contet, C.K. Glass, S. Liangpunsakul, H. Tsukamoto, B. Gao, M. Karin, D.A. Brenner, G.F. Koob, T. Kisseleva, Blockade of IL-17 signaling reverses alcohol-induced liver injury and excessive alcohol drinking in mice, JCI Insight 5(3) (2020).

  174. Lemmers A, Moreno C, Gustot T, Marechal R, Degre D, Demetter P, de Nadai P, Geerts A, Quertinmont E, Vercruysse V, Le Moine O, Deviere J (2009) The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49(2):646–657

    Article  CAS  PubMed  Google Scholar 

  175. B. Kasztelan-Szczerbinska, A. Surdacka, K. Celinski, J. Rolinski, A. Zwolak, S. Miacz, M. Szczerbinski, Prognostic significance of the systemic inflammatory and immune balance in alcoholic liver disease with a focus on gender-related differences, PLoS One 10(6) (2015) e0128347.

  176. Lin F, Taylor NJ, Su H, Huang X, Hussain MJ, Abeles RD, Blackmore L, Zhou Y, Ikbal MM, Heaton N, Jassem W, Shawcross DL, Vergani D, Ma Y (2013) Alcohol dehydrogenase-specific T-cell responses are associated with alcohol consumption in patients with alcohol-related cirrhosis. Hepatology 58(1):314–324

    Article  CAS  PubMed  Google Scholar 

  177. W. Shi, Q. Zhu, J. Gu, X. Liu, L. Lu, X. Qian, J. Shen, F. Zhang, G. Li, Anti-IL-17 antibody improves hepatic steatosis by suppressing interleukin-17-related fatty acid synthesis and metabolism, Clin Dev Immunol 2013 (2013) 253046.

  178. Chu S, Sun R, Gu X, Chen L, Liu M, Guo H, Ju S, Vatsalya V, Feng W, McClain CJ, Deng Z (2021) Inhibition of sphingosine-1-phosphate-induced Th17 cells ameliorates alcohol-associated steatohepatitis in mice. Hepatology 73(3):952–967

    Article  CAS  PubMed  Google Scholar 

  179. Heneghan MA, Yeoman AD, Verma S, Smith AD, Longhi MS (2013) Autoimmune hepatitis. Lancet 382(9902):1433–1444

    Article  CAS  PubMed  Google Scholar 

  180. Longhi MS, Ma Y, Bogdanos DP, Cheeseman P, Mieli-Vergani G, Vergani D (2004) Impairment of CD4(+)CD25(+) regulatory T-cells in autoimmune liver disease. J Hepatol 41(1):31–37

    Article  CAS  PubMed  Google Scholar 

  181. Longhi MS, Ma Y, Mitry RR, Bogdanos DP, Heneghan M, Cheeseman P, Mieli-Vergani G, Vergani D (2005) Effect of CD4+ CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. J Autoimmun 25(1):63–71

    Article  CAS  PubMed  Google Scholar 

  182. Grant CR, Liberal R, Holder BS, Cardone J, Ma Y, Robson SC, Mieli-Vergani G, Vergani D, Longhi MS (2014) Dysfunctional CD39(POS) regulatory T cells and aberrant control of T-helper type 17 cells in autoimmune hepatitis. Hepatology 59(3):1007–1015

    Article  CAS  PubMed  Google Scholar 

  183. Liberal R, Grant CR, Ma Y, Csizmadia E, Jiang ZG, Heneghan MA, Yee EU, Mieli-Vergani G, Vergani D, Robson SC, Longhi MS (2016) CD39 mediated regulation of Th17-cell effector function is impaired in juvenile autoimmune liver disease. J Autoimmun 72:102–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Vuerich M, Harshe R, Frank LA, Mukherjee S, Gromova B, Csizmadia E, Nasser IAM, Ma Y, Bonder A, Patwardhan V, Robson SC, Longhi MS (2021) Altered aryl-hydrocarbon-receptor signalling affects regulatory and effector cell immunity in autoimmune hepatitis. J Hepatol 74(1):48–57

    Article  CAS  PubMed  Google Scholar 

  185. M.S. Longhi, M. Vuerich, A. Kalbasi, J.E. Kenison, A. Yeste, E. Csizmadia, B. Vaughn, L. Feldbrugge, S. Mitsuhashi, B. Wegiel, L. Otterbein, A. Moss, F.J. Quintana, S.C. Robson, Bilirubin suppresses Th17 immunity in colitis by upregulating CD39, JCI Insight 2(9) (2017).

  186. Gulamhusein AF, Hirschfield GM (2020) Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 17(2):93–110

    Article  PubMed  Google Scholar 

  187. Qian C, Jiang T, Zhang W, Ren C, Wang Q, Qin Q, Chen J, Deng A, Zhong R (2013) Increased IL-23 and IL-17 expression by peripheral blood cells of patients with primary biliary cirrhosis. Cytokine 64(1):172–180

    Article  CAS  PubMed  Google Scholar 

  188. Rong G, Zhou Y, Xiong Y, Zhou L, Geng H, Jiang T, Zhu Y, Lu H, Zhang S, Wang P, Zhang B, Zhong R (2009) Imbalance between T helper type 17 and T regulatory cells in patients with primary biliary cirrhosis: the serum cytokine profile and peripheral cell population. Clin Exp Immunol 156(2):217–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. T. Shi, T. Zhang, L. Zhang, Y. Yang, H. Zhang, F. Zhang, The distribution and the fibrotic role of elevated inflammatory Th17 cells in patients with primary biliary cirrhosis, Medicine 94(44) (2015) e1888.

  190. Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, Bowlus CL, Yang GX, Leung PS, Ansari AA, Wu L, Coppel RL, Gershwin ME (2014) IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: implications for therapy. Hepatology 59(5):1944–1953

    Article  CAS  PubMed  Google Scholar 

  191. K. Kawata, M. Tsuda, G.X. Yang, W. Zhang, H. Tanaka, K. Tsuneyama, P. Leung, X.S. He, S. Knechtle, A.A. Ansari, R.L. Coppel, M.E. Gershwin, Identification of potential cytokine pathways for therapeutic intervention in murine primary biliary cirrhosis, PloS one 8(9) (2013) e74225.

  192. H.J. Cordell, Y. Han, G.F. Mells, Y. Li, G.M. Hirschfield, C.S. Greene, G. Xie, B.D. Juran, D. Zhu, D.C. Qian, J.A. Floyd, K.I. Morley, D. Prati, A. Lleo, D. Cusi, U.S.P.B.C.C. Canadian, P.B.C.G.S.G. Italian, U.-P. Consortium, M.E. Gershwin, C.A. Anderson, K.N. Lazaridis, P. Invernizzi, M.F. Seldin, R.N. Sandford, C.I. Amos, K.A. Siminovitch, International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways, Nat Commun 6 (2015) 8019.

  193. Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M (2018) Primary sclerosing cholangitis. Lancet 391(10139):2547–2559

    Article  PubMed  Google Scholar 

  194. Sabino J, Vieira-Silva S, Machiels K, Joossens M, Falony G, Ballet V, Ferrante M, Van Assche G, Van der Merwe S, Vermeire S, Raes J (2016) Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 65(10):1681–1689

    Article  CAS  PubMed  Google Scholar 

  195. Katt J, Schwinge D, Schoknecht T, Quaas A, Sobottka I, Burandt E, Becker C, Neurath MF, Lohse AW, Herkel J, Schramm C (2013) Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 58(3):1084–1093

    Article  CAS  PubMed  Google Scholar 

  196. Wiesner RH, Grambsch PM, Dickson ER, Ludwig J, MacCarty RL, Hunter EB, Fleming TR, Fisher LD, Beaver SJ, LaRusso NF (1989) Primary sclerosing cholangitis: natural history, prognostic factors and survival analysis. Hepatology 10(4):430–436

    Article  CAS  PubMed  Google Scholar 

  197. S. Lemoinne, A. Kemgang, K. Ben Belkacem, M. Straube, S. Jegou, C. Corpechot, I.B.D.N. Saint-Antoine, O. Chazouilleres, C. Housset, H. Sokol, Fungi participate in the dysbiosis of gut microbiota in patients with primary sclerosing cholangitis, Gut 69(1) (2020) 92–102.

  198. Kummen M, Holm K, Anmarkrud JA, Nygard S, Vesterhus M, Hoivik ML, Troseid M, Marschall HU, Schrumpf E, Moum B, Rosjo H, Aukrust P, Karlsen TH, Hov JR (2017) The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 66(4):611–619

    Article  PubMed  Google Scholar 

  199. Torres J, Bao X, Goel A, Colombel JF, Pekow J, Jabri B, Williams KM, Castillo A, Odin JA, Meckel K, Fasihuddin F, Peter I, Itzkowitz S, Hu J (2016) The features of mucosa-associated microbiota in primary sclerosing cholangitis. Aliment Pharmacol Ther 43(7):790–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Tabibian JH, Weeding E, Jorgensen RA, Petz JL, Keach JC, Talwalkar JA, Lindor KD (2013) Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis - a pilot study. Aliment Pharmacol Ther 37(6):604–612

    Article  CAS  PubMed  Google Scholar 

  201. Nakamoto N, Sasaki N, Aoki R, Miyamoto K, Suda W, Teratani T, Suzuki T, Koda Y, Chu PS, Taniki N, Yamaguchi A, Kanamori M, Kamada N, Hattori M, Ashida H, Sakamoto M, Atarashi K, Narushima S, Yoshimura A, Honda K, Sato T, Kanai T (2019) Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nat Microbiol 4(3):492–503

    Article  CAS  PubMed  Google Scholar 

  202. Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–456

    Article  CAS  PubMed  Google Scholar 

  203. Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, Wang X, Ryffel B, Sun B (2013) IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 191(4):1835–1844

    Article  CAS  PubMed  Google Scholar 

  204. Goossens N, Hoshida Y (2016) Is hepatocellular cancer the same disease in alcoholic and nonalcoholic fatty liver diseases? Gastroenterology 150(8):1710–1717

    Article  PubMed  Google Scholar 

  205. Fabre T, Kared H, Friedman SL, Shoukry NH (2014) IL-17A enhances the expression of profibrotic genes through upregulation of the TGF-beta receptor on hepatic stellate cells in a JNK-dependent manner. J Immunol 193(8):3925–3933

    Article  CAS  PubMed  Google Scholar 

  206. T. Fabre, M.F. Molina, G. Soucy, J.P. Goulet, B. Willems, J.P. Villeneuve, M. Bilodeau, N.H. Shoukry, Type 3 cytokines IL-17A and IL-22 drive TGF-beta-dependent liver fibrosis, Sci Immunol 3(28) (2018).

  207. Zhao J, Zhang Z, Luan Y, Zou Z, Sun Y, Li Y, Jin L, Zhou C, Fu J, Gao B, Fu Y, Wang FS (2014) Pathological functions of interleukin-22 in chronic liver inflammation and fibrosis with hepatitis B virus infection by promoting T helper 17 cell recruitment. Hepatology 59(4):1331–1342

    Article  CAS  PubMed  Google Scholar 

  208. Kong X, Feng D, Wang H, Hong F, Bertola A, Wang FS, Gao B (2012) Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56(3):1150–1159

    Article  CAS  PubMed  Google Scholar 

  209. Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, Wu C, Li SP, Zheng L (2009) Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 50(5):980–989

    Article  CAS  PubMed  Google Scholar 

  210. Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114(6):1141–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Liang KH, Lai MW, Lin YH, Chu YD, Lin CL, Lin WR, Huang YH, Wang TH, Chien RN, Hu TH, Yeh CT (2021) Plasma interleukin-17 and alpha-fetoprotein combination effectively predicts imminent hepatocellular carcinoma occurrence in liver cirrhotic patients. BMC Gastroenterol 21(1):177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Qian X, Chen H, Wu X, Hu L, Huang Q, Jin Y (2017) Interleukin-17 acts as double-edged sword in anti-tumor immunity and tumorigenesis. Cytokine 89:34–44

    Article  CAS  PubMed  Google Scholar 

  213. Beringer A, Noack M, Miossec P (2016) IL-17 in chronic inflammation: from discovery to targeting. Trends Mol Med 22(3):230–241

    Article  CAS  PubMed  Google Scholar 

  214. Silacci M, Lembke W, Woods R, Attinger-Toller I, Baenziger-Tobler N, Batey S, Santimaria R, von der Bey U, Koenig-Friedrich S, Zha W, Schlereth B, Locher M, Bertschinger J, Grabulovski D (2016) Discovery and characterization of COVA322, a clinical-stage bispecific TNF/IL-17A inhibitor for the treatment of inflammatory diseases. MAbs 8(1):141–149

    Article  CAS  PubMed  Google Scholar 

  215. Glatt S, Baeten D, Baker T, Griffiths M, Ionescu L, Lawson ADG, Maroof A, Oliver R, Popa S, Strimenopoulou F, Vajjah P, Watling MIL, Yeremenko N, Miossec P, Shaw S (2018) Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann Rheum Dis 77(4):523–532

    Article  CAS  PubMed  Google Scholar 

  216. Gordon KB, Langley RG, Gottlieb AB, Papp KA, Krueger GG, Strober BE, Williams DA, Gu Y, Valdes JM (2012) A phase III, randomized, controlled trial of the fully human IL-12/23 mAb briakinumab in moderate-to-severe psoriasis. J Invest Dermatol 132(2):304–314

    Article  CAS  PubMed  Google Scholar 

  217. A.B. Kimball, K.B. Gordon, R.G. Langley, A. Menter, E.K. Chartash, J. Valdes, A.B.T.P.S. Investigators, Safety and efficacy of ABT-874, a fully human interleukin 12/23 monoclonal antibody, in the treatment of moderate to severe chronic plaque psoriasis: results of a randomized, placebo-controlled, phase 2 trial, Arch Dermatol 144(2) (2008) 200–7.

  218. C.L. Leonardi, A.B. Kimball, K.A. Papp, N. Yeilding, C. Guzzo, Y. Wang, S. Li, L.T. Dooley, K.B. Gordon, P.s. investigators, Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1), Lancet 371(9625) (2008) 1665–74.

  219. K.A. Papp, R.G. Langley, M. Lebwohl, G.G. Krueger, P. Szapary, N. Yeilding, C. Guzzo, M.C. Hsu, Y. Wang, S. Li, L.T. Dooley, K. Reich, P.s. investigators, Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2), Lancet 371(9625) (2008) 1675–84.

  220. Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J, Istrate MA, Kamenecka TM, Roush WR, Vidovic D, Schurer SC, Xu J, Wagoner G, Drew PD, Griffin PR, Burris TP (2011) Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472(7344):491–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Isono F, Fujita-Sato S, Ito S (2014) Inhibiting RORgammat/Th17 axis for autoimmune disorders. Drug Discov Today 19(8):1205–1211

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.jp) for English language editing.

Funding

This study was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (B) 20H04129 and Grant-in-Aid for Young Scientists (B) 20K17062; Japan Agency for Medical Research and Development (AMED) under Grant Number 21ek0109416h0003; the Takeda Science Foundation; and Keio University Medical Fund.

Japan Agency for Medical Research and Development,21ek0109416h0003,Nobuhiro Nakamoto,Japan Society for the Promotion of Science,20H04129,Nobuhiro Nakamoto,Takeda Science Foundation,School of Medicine,Keio University

Author information

Authors and Affiliations

Authors

Contributions

N.N. conceptualized this review. N.T. and N.N. wrote the manuscript and designed the figures. PS.C., T.I, T.T., and T.K. provided critical scientific advice and reviewed the manuscript. T.K. helped to conceive and supervise the study.

Corresponding authors

Correspondence to Nobuhiro Nakamoto or Takanori Kanai.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Tolerance and autoimmunity in the liver—Guest Editor: Christoph Schramm, Ansgar Lohse & Ye Oo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniki, N., Nakamoto, N., Chu, PS. et al. Th17 cells in the liver: balancing autoimmunity and pathogen defense. Semin Immunopathol 44, 509–526 (2022). https://doi.org/10.1007/s00281-022-00917-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00917-9

Keywords

Navigation