Skip to main content

Advertisement

Log in

Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

A Correction to this article was published on 31 March 2022

This article has been updated

Abstract

The cholangiopathies are a group of liver diseases that affect cholangiocytes, the epithelial cells that line the bile ducts. Biliary atresia (BA), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are three cholangiopathies with significant immune-mediated pathogenesis where chronic inflammation and fibrosis lead to obliteration of bile ducts and eventual liver cirrhosis. Cellular senescence is a state of cell cycle arrest in which cells become resistant to apoptosis and profusely secrete a bioactive secretome. Recent evidence indicates that cholangiocyte senescence contributes to the pathogenesis of BA, PBC, and PSC. This review explores the role of cholangiocyte senescence in BA, PBC, and PSC, ascertains how cholangiocyte senescence may promote a senescence-associated immunopathology in these cholangiopathies, and provides the rationale for therapeutically targeting senescence as a treatment option for BA, PBC, and PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Doherty DG (2019) Antigen-specific immune tolerance↓↑ in the liver. Nat Biomed Eng 3:763–765

    Article  CAS  PubMed  Google Scholar 

  2. Schett G, McInnes IB, Neurath MF (2021) Reframing Immune-Mediated Inflammatory Diseases through Signature Cytokine Hubs. N Engl J Med 385:628–639

    Article  CAS  PubMed  Google Scholar 

  3. McQuitty CE, Williams R, Chokshi S, Urbani L (2020) Immunomodulatory Role of the Extracellular Matrix Within the Liver Disease Microenvironment. Front Immunol 11:574276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lazaridis KN, LaRusso NF (2016) Primary Sclerosing Cholangitis. N Engl J Med 375:1161–1170

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schoning W, Schmeding M, Ulmer F, Andert A, Neumann U (2015) Liver Transplantation for Patients with Cholestatic Liver Diseases. Viszeralmedizin 31:194–198

    PubMed  PubMed Central  Google Scholar 

  6. Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ (2019) Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 16:269–281

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cheung AC, Lorenzo Pisarello MJ, LaRusso NF (2018) Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 1864:1220–1231

    Article  CAS  PubMed  Google Scholar 

  8. Syal G, Fausther M, Dranoff JA (2012) Advances in cholangiocyte immunobiology. Am J Physiol Gastrointest Liver Physiol 303:G1077–G1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pinto C, Giordano DM, Maroni L, Marzioni M (2018) Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis 1864:1270–1278

    Article  CAS  PubMed  Google Scholar 

  10. Guicciardi ME, Trussoni CE, LaRusso NF, Gores GJ (2020) The Spectrum of Reactive Cholangiocytes in Primary Sclerosing Cholangitis. Hepatology 71:741–748

    Article  PubMed  Google Scholar 

  11. Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G (2019) Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology 69:420–430

    Article  PubMed  Google Scholar 

  12. Kirkland JL, Tchkonia T (2020) Senolytic drugs: from discovery to translation. J Intern Med 288:518–536

    Article  CAS  PubMed  Google Scholar 

  13. Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37:961–976

    Article  CAS  PubMed  Google Scholar 

  14. Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL (2019) Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huda N, Liu G, Hong H, Yan S, Khambu B, Yin XM (2019) Hepatic senescence, the good and the bad. World J Gastroenterol 25:5069–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prata L, Ovsyannikova IG, Tchkonia T, Kirkland JL (2018) Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol 40:101275

    Article  CAS  PubMed  Google Scholar 

  17. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koda Y, Teratani T, Chu PS, Hagihara Y, Mikami Y, Harada Y, Tsujikawa H, Miyamoto K, Suzuki T, Taniki N, Sujino T, Sakamoto M, Kanai T, Nakamoto N (2021) CD8(+) tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat Commun 12:4474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tabibian JH, O’Hara SP, Splinter PL, Trussoni CE, LaRusso NF (2014) Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 59:2263–2275

    Article  CAS  PubMed  Google Scholar 

  20. Lysek-Gladysinska M, Wieczorek A, Jozwik A, Walaszczyk A, Jelonek K, Szczukiewicz-Markowska G, Horbanczuk OK, Pietrowska M, Widlak P, Gabrys D (2021) Aging-related changes in the ultrastructure of hepatocytes and cardiomyocytes of elderly mice are enhanced in ApoE-deficient animals. Cells 10:502

  21. Brochado O, Martinez I, Berenguer J, Medrano L, Gonzalez-Garcia J, Jimenez-Sousa MA, Carrero A, Hontanon V, Navarro J, Guardiola JM, Fernandez-Rodriguez A, Resino S, Group GS (2021) HCV eradication with IFN-based therapy does not completely restore gene expression in PBMCs from HIV/HCV-coinfected patients. J Biomed Sci 28:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P, Patel N, Virasami A, Sebire NJ, Kinsler V, Valdovinos A, LeSaux CJ, Passos JF, Antoniou A, Rustin MHA, Campisi J, Akbar AN (2019) Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition. Nat Commun 10:2387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Campbell RA, Docherty MH, Ferenbach DA, Mylonas KJ (2021) The Role of Ageing and Parenchymal Senescence on Macrophage Function and Fibrosis. Front Immunol 12:700790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salminen A (2021) Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 67:101280

    Article  CAS  PubMed  Google Scholar 

  25. Borgoni S, Kudryashova KS, Burka K, de Magalhaes JP (2021) Targeting immune dysfunction in aging. Ageing Res Rev 70:101410

    Article  CAS  PubMed  Google Scholar 

  26. Declerck K, Vanden BW (2019) Characterization of Blood Surrogate Immune-Methylation Biomarkers for Immune Cell Infiltration in Chronic Inflammaging Disorders. Front Genet 10:1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW, Trussoni CE, Cui Y, Angelini L, Lee KA, McGowan SJ, Burrack AL, Wang D, Dong Q, Lu A, Sano T, O’Kelly RD, McGuckian CA, Kato JI, Bank MP, Wade EA, Pillai SPS, Klug J, Ladiges WC, Burd CE, Lewis SE, LaRusso NF, Vo NV, Wang Y, Kelley EE, Huard J, Stromnes IM, Robbins PD, Niedernhofer LJ (2021) An aged immune system drives senescence and ageing of solid organs. Nature 594:100–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, Yosef R, Sagiv A, Agrawal A, Shapira A, Windheim J, Tsoory M, Schirmbeck R, Amit I, Geiger H, Krizhanovsky V (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 9:5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. So-Armah K, Freiberg M, Cheng D, Lim JK, Gnatienko N, Patts G, Doyle M, Fuster D, Lioznov D, Krupitsky E, Samet J (2019) Liver fibrosis and accelerated immune dysfunction (immunosenescence) among HIV-infected Russians with heavy alcohol consumption - an observational cross-sectional study. BMC Gastroenterol 20:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Stahl EC, Haschak MJ, Popovic B, Brown BN (2018) Macrophages in the Aging Liver and Age-Related Liver Disease. Front Immunol 9:2795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sharma R (2021) Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology. Biogerontology 22:571–587

    Article  PubMed  Google Scholar 

  32. Zhang B, Bailey WM, Braun KJ, Gensel JC (2015) Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury. Exp Neurol 273:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–875

    Article  CAS  PubMed  Google Scholar 

  34. Behmoaras J, Gil J (2021) Similarities and interplay between senescent cells and macrophages. J Cell Biol 220:202010162

  35. Feldman AG, Mack CL (2012) Biliary atresia: cellular dynamics and immune dysregulation. Semin Pediatr Surg 21:192–200

    Article  PubMed  PubMed Central  Google Scholar 

  36. Garcia AV, Cowles RA, Kato T, Hardy MA (2012) Morio Kasai: a remarkable impact beyond the Kasai procedure. J Pediatr Surg 47:1023–1027

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH, Doo E, Sokol RJ (2018) Biliary Atresia: Clinical and Research Challenges for the Twenty-First Century. Hepatology 68:1163–1173

    Article  PubMed  Google Scholar 

  38. Pang X, Cao J, Chen S, Gao Z, Liu G, Chong Y, Chen Z, Gong J, Li X (2021) Unsupervised Clustering Reveals Distinct Subtypes of Biliary Atresia Based on Immune Cell Types and Gene Expression. Front Immunol 12:720841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mack CL, Falta MT, Sullivan AK, Karrer F, Sokol RJ, Freed BM, Fontenot AP (2007) Oligoclonal expansions of CD4+ and CD8+ T-cells in the target organ of patients with biliary atresia. Gastroenterology 133:278–287

    Article  CAS  PubMed  Google Scholar 

  40. Feng J, Li M, Gu W, Tang H, Yu S (2004) The aberrant expression of HLA-DR in intrahepatic bile ducts in patients with biliary atresia: an immunohistochemistry and immune electron microscopy study. J Pediatr Surg 39:1658–1662

    Article  PubMed  Google Scholar 

  41. Hill R, Quaglia A, Hussain M, Hadzic N, Mieli-Vergani G, Vergani D, Davenport M (2015) Th-17 cells infiltrate the liver in human biliary atresia and are related to surgical outcome. J Pediatr Surg 50:1297–1303

    Article  PubMed  Google Scholar 

  42. Yuasa T, Tsuji H, Kimura S, Niwa N, Yurugi K, Egawa H, Tanaka K, Maruya E, Saji HO, Asano H, Maekawa T (2005) Human leukocyte antigens in Japanese patients with biliary atresia: retrospective analysis of patients who underwent living donor liver transplantation. Hum Immunol 66:295–300

    Article  CAS  PubMed  Google Scholar 

  43. Mohanty SK, Donnelly B, Temple H, Bondoc A, McNeal M, Tiao G. 2021. T-bet deficiency attenuates bile duct injury in experimental biliary atresia. Cells 10:3461

  44. Guo X, Xu Y, Luo W, Fang R, Cai L, Wang P, Zhang Y, Wen Z, Xu Y (2021) Programmed cell death protein-1 (PD-1) protects liver damage by suppressing IFN-gamma expression in T cells in infants and neonatal mice. BMC Pediatr 21:317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Narayanaswamy B, Gonde C, Tredger JM, Hussain M, Vergani D, Davenport M (2007) Serial circulating markers of inflammation in biliary atresia–evolution of the post-operative inflammatory process. Hepatology 46:180–187

    Article  CAS  PubMed  Google Scholar 

  46. van Deursen JM (2014) The role of senescent cells in ageing. Nature 509:439–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Victorelli S, Passos JF (2017) Telomeres and Cell Senescence - Size Matters Not. EBioMedicine 21:14–20

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sanada Y, Aida J, Kawano Y, Nakamura K, Shimomura N, Ishikawa N, Arai T, Poon SS, Yamada N, Okada N, Wakiya T, Hayashida M, Saito T, Egami S, Hishikawa S, Ihara Y, Urahashi T, Mizuta K, Yasuda Y, Kawarasaki H, Takubo K (2012) Hepatocellular telomere length in biliary atresia measured by Q-FISH. World J Surg 36:908–916

    Article  PubMed  Google Scholar 

  49. Udomsinprasert W, Poovorawan Y, Chongsrisawat V, Vejchapipat P, Zhan D, Honsawek S (2015) Telomere Length in Peripheral Blood Leukocytes Is Associated with Severity of Biliary Atresia. PLoS One 10:e0134689

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sasaki M, Kuo FY, Huang CC, Swanson PE, Chen CL, Chuang JH, Yeh MM (2018) Increased expression of senescence-associated cell cycle regulators in the progression of biliary atresia: an immunohistochemical study. Histopathology 72:1164–1171

    Article  PubMed  Google Scholar 

  51. Lleo A, Leung PSC, Hirschfield GM, Gershwin EM (2020) The Pathogenesis of Primary Biliary Cholangitis: A Comprehensive Review. Semin Liver Dis 40:34–48

    Article  CAS  PubMed  Google Scholar 

  52. Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Bjornsson E, Bowlus C, Carbone M, Chazouilleres O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME (2019) The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 105:102328

    Article  PubMed  Google Scholar 

  53. Li H, Guan Y, Han C, Zhang Y, Liu Q, Wei W, Ma Y (2021) The pathogenesis, models and therapeutic advances of primary biliary cholangitis. Biomed Pharmacother 140:111754

    Article  CAS  PubMed  Google Scholar 

  54. Haydon GH, Neuberger J (2000) PBC: an infectious disease? Gut 47:586–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sasaki M, Sato Y, Nakanuma Y (2020) Increased p16(INK4a)-expressing senescent bile ductular cells are associated with inadequate response to ursodeoxycholic acid in primary biliary cholangitis. J Autoimmun 107:102377

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Dai M, Cui Y, Hou G, Deng J, Gao X, Liao Z, Liu Y, Meng Y, Wu L, Yao C, Wang Y, Qian J, Guo Q, Ding H, Qu B, Shen N (2018) Association of Abnormal Elevations in IFIT3 With Overactive Cyclic GMP-AMP Synthase/Stimulator of Interferon Genes Signaling in Human Systemic Lupus Erythematosus Monocytes. Arthritis Rheumatol 70:2036–2045

    Article  CAS  PubMed  Google Scholar 

  57. Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z, Capell BC, Xu C, Xu M, Kieckhaefer JE, Jiang T, Shoshkes-Carmel M, Tanim K, Barber GN, Seykora JT, Millar SE, Kaestner KH, Garcia BA, Adams PD, Berger SL (2017) Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ueno K, Aiba Y, Hitomi Y, Shimoda S, Nakamura H, Gervais O, Kawai Y, Kawashima M, Nishida N, Kohn SS, Kojima K, Katsushima S, Naganuma A, Sugi K, Komatsu T, Mannami T, Matsushita K, Yoshizawa K, Makita F, Nikami T, Nishimura H, Kouno H, Kouno H, Ohta H, Komura T, Tsuruta S, Yamauchi K, Kobata T, Kitasato A, Kuroki T, Abiru S, Nagaoka S, Komori A, Yatsuhashi H, Migita K, Ohira H, Tanaka A, Takikawa H, Nagasaki M, Tokunaga K, Nakamura M, Japan P-GCi. (2020) Integrated GWAS and mRNA Microarray Analysis Identified IFNG and CD40L as the Central Upstream Regulators in Primary Biliary Cholangitis. Hepatol Commun 4:724–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen K, Liu J, Cao X (2017) Regulation of type I interferon signaling in immunity and inflammation: A comprehensive review. J Autoimmun 83:1–11

    Article  PubMed  CAS  Google Scholar 

  60. Sasaki M, Sato Y, Nakanuma Y (2021) Interferon-induced protein with tetratricopeptide repeats 3 may be a key factor in primary biliary cholangitis. Sci Rep 11:11413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu XY, Chen W, Wei B, Shan YF, Wang C (2011) IFN-induced TPR protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. J Immunol 187:2559–2568

    Article  CAS  PubMed  Google Scholar 

  62. Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y (2010) Modulation of the microenvironment by senescent biliary epithelial cells may be involved in the pathogenesis of primary biliary cirrhosis. J Hepatol 53:318–325

    Article  PubMed  Google Scholar 

  63. Barron-Millar B, Ogle L, Mells G, Flack S, Badrock J, Sandford R, Kirby J, Palmer J, Jopson L, Brain J, Smith GR, Rushton S, Hegade VS, Jones R, Rushbrook S, Thorburn D, Ryder S, Hirschfield G, Consortium U-PR, Dyson JK, Jones DEJ (2021) The serum proteome and ursodeoxycholic acid response in primary biliary cholangitis. Hepatology 74:3269

  64. Chen HW, Lin CI, Chuang YH (2021) Interleukin-30 suppresses not only CD4(+) T cells but also regulatory T cells in murine primary biliary cholangitis. Biomedicines 9:1031

  65. Landi A, Weismuller TJ, Lankisch TO, Santer DM, Tyrrell DL, Manns MP, Houghton M (2014) Differential serum levels of eosinophilic eotaxins in primary sclerosing cholangitis, primary biliary cirrhosis, and autoimmune hepatitis. J Interferon Cytokine Res 34:204–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shimoyama S, Kawata K, Ohta K, Chida T, Suzuki T, Tsuneyama K, Shimoda S, Kurono N, Leung PSC, Gershwin ME, Suda T, Kobayashi Y (2021) Ursodeoxycholic acid impairs liver-infiltrating T-cell chemotaxis through IFN-gamma and CX3CL1 production in primary biliary cholangitis. Eur J Immunol 51:1519–1530

    Article  CAS  PubMed  Google Scholar 

  67. Kaplan MM, Gershwin ME (2005) Primary biliary cirrhosis. N Engl J Med 353:1261–1273

    Article  CAS  PubMed  Google Scholar 

  68. Shimoda S, Harada K, Niiro H, Shirabe K, Taketomi A, Maehara Y, Tsuneyama K, Nakanuma Y, Leung P, Ansari AA, Gershwin ME, Akashi K (2011) Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology 53:1270–1281

    Article  CAS  PubMed  Google Scholar 

  69. Deeb M, Karlsen TH, Hirschfield GM (2020) The 6 C’s of primary sclerosing cholangitis. J Hepatol 73:1255–1256

    Article  PubMed  Google Scholar 

  70. Chapman MH, Thorburn D, Hirschfield GM, Webster GGJ, Rushbrook SM, Alexander G, Collier J, Dyson JK, Jones DE, Patanwala I, Thain C, Walmsley M, Pereira SP (2019) British Society of Gastroenterology and UK-PSC guidelines for the diagnosis and management of primary sclerosing cholangitis. Gut 68:1356–1378

    Article  CAS  PubMed  Google Scholar 

  71. Tabibian JH, Trussoni CE, O’Hara SP, Splinter PL, Heimbach JK, LaRusso NF (2014) Characterization of cultured cholangiocytes isolated from livers of patients with primary sclerosing cholangitis. Lab Invest 94:1126–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cazzagon N, Sarcognato S, Floreani A, Corra G, De Martin S, Guzzardo V, Russo FP, Guido M (2021) Cholangiocyte senescence in primary sclerosing cholangitis is associated with disease severity and prognosis. JHEP Rep 3:100286

    Article  PubMed  PubMed Central  Google Scholar 

  73. O’Hara SP, Splinter PL, Trussoni CE, Pisarello MJ, Loarca L, Splinter NS, Schutte BF, LaRusso NF (2017) ETS Proto-oncogene 1 Transcriptionally Up-regulates the Cholangiocyte Senescence-associated Protein Cyclin-dependent Kinase Inhibitor 2A. J Biol Chem 292:4833–4846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferreira-Gonzalez S, Lu WY, Raven A, Dwyer B, Man TY, O’Duibhir E, Lewis PJS, Campana L, Kendall TJ, Bird TG, Tarrats N, Acosta JC, Boulter L, Forbes SJ (2018) Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nat Commun 9:1020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zimmer CL, von Seth E, Buggert M, Strauss O, Hertwig L, Nguyen S, Wong AYW, Zotter C, Berglin L, Michaelsson J, Hansson MR, Arnelo U, Sparrelid E, Ellis ECS, Soderholm JD, Keita AV, Holm K, Ozenci V, Hov JR, Mold JE, Cornillet M, Ponzetta A, Bergquist A, Bjorkstrom NK (2021) A biliary immune landscape map of primary sclerosing cholangitis reveals a dominant network of neutrophils and tissue-resident T cells. Sci Transl Med 13:3107

  76. O’Hara SP, Karlsen TH, LaRusso NF (2017) Cholangiocytes and the environment in primary sclerosing cholangitis: where is the link? Gut 66:1873–1877

    Article  CAS  PubMed  Google Scholar 

  77. Guicciardi ME, Trussoni CE, Krishnan A, Bronk SF, Lorenzo Pisarello MJ, O’Hara SP, Splinter PL, Gao Y, Vig P, Revzin A, LaRusso NF, Gores GJ (2018) Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. J Hepatol 69:676–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kundu D, Kennedy L, Meadows V, Baiocchi L, Alpini G, Francis H (2020) The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expr 20:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tchkonia T, Kirkland JL (2018) Aging, Cell Senescence, and Chronic Disease: Emerging Therapeutic Strategies. JAMA 320:1319–1320

    Article  PubMed  Google Scholar 

  80. Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C, Wade EA, Kato JI, Grassi D, Wentworth M, Burd CE, Arriaga EA, Ladiges WL, Tchkonia T, Kirkland JL, Robbins PD, Niedernhofer LJ (2018) Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36:18–28

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lagoumtzi SM, Chondrogianni N (2021) Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic Biol Med 171:169–190

    Article  CAS  PubMed  Google Scholar 

  82. Chen Z, Hu K, Feng L, Su R, Lai N, Yang Z, Kang S (2018) Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer. Cancer Sci 109:1753–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, Liu X, Thummuri D, Yuan Y, Wiegand JS, Pei J, Zhang W, Sharma A, McCurdy CR, Kuruvilla VM, Baran N, Ferrando AA, Kim YM, Rogojina A, Houghton PJ, Huang G, Hromas R, Konopleva M, Zheng G, Zhou D (2019) A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat Med 25:1938–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nakagami H (2020) Cellular senescence and senescence-associated T cells as a potential therapeutic target. Geriatr Gerontol Int 20:97–100

    Article  PubMed  Google Scholar 

  85. Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, Li X, Giavridis T, Kulick A, Houlihan S, Peerschke E, Friedman SL, Ponomarev V, Piersigilli A, Sadelain M, Lowe SW (2020) Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583:127–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Raffaele M, Kovacovicova K, Frohlich J, Lo Re O, Giallongo S, Oben JA, Faldyna M, Leva L, Giannone AG, Cabibi D, Vinciguerra M (2021) Mild exacerbation of obesity- and age-dependent liver disease progression by senolytic cocktail dasatinib + quercetin. Cell Commun Signal 19:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchevsky SB, Musi N, Kirkland JL (2019) Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 40:554–563

    Article  PubMed  PubMed Central  Google Scholar 

  88. Alsuraih M, O’Hara SP, Woodrum JE, Pirius NE, LaRusso NF (2021) Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2 (-/-) mouse. JHEP Rep 3:100250

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kyritsi K, Francis H, Zhou T, Ceci L, Wu N, Yang Z, Meng F, Chen L, Baiocchi L, Kundu D, Kennedy L, Liangpunsakul S, Wu C, Glaser S, Alpini G (2020) Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2(/) Mouse Model of Primary Sclerosing Cholangitis. Gene Expr 20:89–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moncsek A, Al-Suraih MS, Trussoni CE, O’Hara SP, Splinter PL, Zuber C, Patsenker E, Valli PV, Fingas CD, Weber A, Zhu Y, Tchkonia T, Kirkland JL, Gores GJ, Mullhaupt B, LaRusso NF, Mertens JC (2018) Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2(-/-) ) mice. Hepatology 67:247–259

    Article  CAS  PubMed  Google Scholar 

  91. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pinto C, Ninfole E, Benedetti A, Maroni L, Marzioni M (2019) Aging-Related Molecular Pathways in Chronic Cholestatic Conditions. Front Med (Lausanne) 6:332

    Article  Google Scholar 

  93. Moore RM, Sun Z, Juran BD, Lazaridis KN (2020) Genome-wide resolution peripheral blood methylome profiling reveals signatures for cholestatic liver disease. Epigenomics 12:1363–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Trauner M, Gindin Y, Jiang Z, Chung C, Subramanian GM, Myers RP, Gulamhusein A, Kowdley KV, Levy C, Goodman Z, Manns MP, Muir AJ, Bowlus CL (2020) Methylation signatures in peripheral blood are associated with marked age acceleration and disease progression in patients with primary sclerosing cholangitis. JHEP Rep 2:100060

    Article  PubMed  Google Scholar 

  95. Hartmann A, Hartmann C, Secci R, Hermann A, Fuellen G, Walter M (2021) Ranking Biomarkers of Aging by Citation Profiling and Effort Scoring. Front Genet 12:686320

    Article  PubMed  PubMed Central  Google Scholar 

  96. Schafer MJ, Zhang X, Kumar A, Atkinson EJ, Zhu Y, Jachim S, Mazula DL, Brown AK, Berning M, Aversa Z, Kotajarvi B, Bruce CJ, Greason KL, Suri RM, Tracy RP, Cummings SR, White TA, LeBrasseur NK (2020) The senescence-associated secretome as an indicator of age and medical risk. JCI Insight 5:133668

  97. Al-Mudares F, Reddick S, Ren J, Venkatesh A, Zhao C, Lingappan K (2020) Role of Growth Differentiation Factor 15 in Lung Disease and Senescence: Potential Role Across the Lifespan. Front Med (Lausanne) 7:594137

    Article  Google Scholar 

  98. Picon C, Tejeda-Velarde A, Fernandez-Velasco JI, Comabella M, Alvarez-Lafuente R, Quintana E, Sainz de la Maza S, Monreal E, Villarrubia N, Alvarez-Cermeno JC, Dominguez-Mozo MI, Ramio-Torrenta L, Rodriguez-Martin E, Roldan E, Aladro Y, Medina S, Espino M, Masjuan J, Matute-Blanch C, Munoz-San Martin M, Espejo C, Guaza C, Muriel A, Costa-Frossard L, Villar LM (2021) Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis. Front Immunol 12:685139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Englund DA, Sakamoto AE, Fritsche CM, Heeren AA, Zhang X, Kotajarvi BR, Lecy DR, Yousefzadeh MJ, Schafer MJ, White TA, Atkinson EJ, LeBrasseur NK (2021) Exercise reduces circulating biomarkers of cellular senescence in humans. Aging Cell 20:e13415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ou HL, Hoffmann R, Gonzalez-Lopez C, Doherty GJ, Korkola JE, Munoz-Espin D (2021) Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 15:2634–2671

    Article  PubMed  Google Scholar 

  101. Yeh SH, Lin CH, Yang YJ, Lin LW, Tseng CW, Yang KD (2021) Higher senescence associated secretory phenotype and lower defense mediator in urinary extracellular vesicles of elders with and without Parkinson disease. Sci Rep 11:15783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Vesterhus M, Holm A, Hov JR, Nygard S, Schrumpf E, Melum E, Thorbjornsen LW, Paulsen V, Lundin K, Dale I, Gilja OH, Zweers S, Vatn M, Schaap FG, Jansen PLM, Ueland T, Rosjo H, Moum B, Ponsioen CY, Boberg KM, Farkkila M, Karlsen TH, Lund-Johansen F (2017) Novel serum and bile protein markers predict primary sclerosing cholangitis disease severity and prognosis. J Hepatol 66:1214–1222

    Article  CAS  PubMed  Google Scholar 

  103. Rapisarda V, Borghesan M, Miguela V, Encheva V, Snijders AP, Lujambio A, O’Loghlen A (2017) Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-beta Pathway. Cell Rep 18:2480–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hoare M, Ito Y, Kang TW, Weekes MP, Matheson NJ, Patten DA, Shetty S, Parry AJ, Menon S, Salama R, Antrobus R, Tomimatsu K, Howat W, Lehner PJ, Zender L, Narita M (2016) NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol 18:979–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031

    Article  CAS  PubMed  Google Scholar 

  106. Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, Holtz A, Shah S, Sharma V, Ferrucci L, Campisi J, Schilling B (2020) A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 18:e3000599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Romashkan S, Chang H, Hadley EC (2021) National Institute on Aging Workshop: Repurposing Drugs or Dietary Supplements for Their Senolytic or Senomorphic Effects: Considerations for Clinical Trials. J Gerontol A Biol Sci Med Sci 76:1144–1152

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bourlon MT, Velazquez HE, Hinojosa J, Orozco L, Rios-Corzo R, Lima G, Llorente L, Hernandez-Ramirez DF, Valentin-Cortez FJ, Medina-Rangel I, Atisha-Fregoso Y (2020) Immunosenescence profile and expression of the aging biomarker (p16(INK4a)) in testicular cancer survivors treated with chemotherapy. BMC Cancer 20:882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grant DK57993 (to N.F.L.), the Mayo Foundation, and the Mayo Clinic Center for Cell Signaling in Gastroenterology (P30DK084567) and PSC Partners Seeking a Cure Foundation (S.P.O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas F. LaRusso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the special issue on: Tolerance and autoimmunity in the liver - Guest Editors: Christoph Schramm, Ansgar Lohse & Ye Oo

The original online version of this article was revised: Table 1 was incorrect. The corrected table 1 is given below.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trussoni, C.E., O’Hara, S.P. & LaRusso, N.F. Cellular senescence in the cholangiopathies: a driver of immunopathology and a novel therapeutic target. Semin Immunopathol 44, 527–544 (2022). https://doi.org/10.1007/s00281-022-00909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-022-00909-9

Keywords

Navigation