Skip to main content

Advertisement

Log in

Eosinophils and helminth infection: protective or pathogenic?

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Since the earliest descriptions of this enigmatic cell, eosinophils have been implicated in both protective and pathogenic immune responses to helminth infection. Nevertheless, despite substantial data from in vitro studies, human infections, and animal models, their precise role in helminth infection remains incompletely understood. This is due to a number of factors, including the heterogeneity of the many parasites included in the designation “helminth,” the complexity and redundancy in the host immune response to helminths, and the pleiotropic functions of eosinophils themselves. This review examines the consequences of helminth-associated eosinophilia in the context of protective immunity, pathogenesis, and immunoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ehrlich P, Lazarus A (1900) Histology of the blood: normal and pathological. The University Press

  2. Balla KM, Lugo-Villarino G, Spitsbergen JM, Stachura DL, Hu Y, Bañuelos K, Romo-Fewell O, Aroian RV, Traver D (2010) Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants. Blood 116(19):3944–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lammas DA, Wakelin D, Mitchell LA, Tuohy M, Else KJ, Grencis RK (1992) Genetic influences upon eosinophilia and resistance in mice infected with Trichinella spiralis. Parasitology 105(Pt 1):117–124

    Article  PubMed  Google Scholar 

  4. Timothy LM, Behnke JM (1997) Necator americanus in inbred mice: evidence in support of genetically determined differences in the cellular immune response to a primary infection. Parasitology 114(Pt 1):53–63

  5. Savenije OEM, Kerkhof M, Reijmerink NE, Brunekreef B, de Jongste JC, et al. 2011. Interleukin-1 receptor-like 1 polymorphisms are associated with serum IL1RL1-a, eosinophils, and asthma in childhood. J. Allergy Clin. Immunol. 127(3):750–6.e1

  6. Gazzinelli-Guimaraes PH, de Queiroz PR, Ricciardi A, Bonne-Année S, Sciurba J et al (2019) Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. J Clin Invest 129(9):3686–3701

    Article  PubMed  PubMed Central  Google Scholar 

  7. McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou X-N (2018) Schistosomiasis. Nat Rev Dis Primers 4(1):13

    Article  PubMed  Google Scholar 

  8. de Jesus AR, Silva A, Santana LB, Magalhães A, de Jesus AA, de Almeida RP, Rêgo MAV, Burattini MN, Pearce EJ, Carvalho EM (2002) Clinical and immunologic evaluation of 31 patients with acute schistosomiasis mansoni. J Infect Dis 185(1):98–105

    Article  PubMed  Google Scholar 

  9. Maxwell C, Hussain R, Nutman TB, Poindexter RW, Little MD et al (1987) The clinical and immunologic responses of normal human volunteers to low dose hookworm (necator americanus) infection. Am J Trop Med Hyg 37(1):126–134

  10. Roan F, Obata-Ninomiya K, Ziegler SF (2019) Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest 129(4):1441–1451

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hung L-Y, Lewkowich IP, Dawson LA, Downey J, Yang Y, Smith DE, Herbert DR (2013) IL-33 drives biphasic il-13 production for noncanonical type 2 immunity against hookworms. Proc Natl Acad Sci U S A 110(1):282–287

    Article  CAS  PubMed  Google Scholar 

  12. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TKA, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie ANJ (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464(7293):1367–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yasuda K, Muto T, Kawagoe T, Matsumoto M, Sasaki Y, Matsushita K, Taki Y, Futatsugi-Yumikura S, Tsutsui H, Ishii KJ, Yoshimoto T, Akira S, Nakanishi K (2012) Contribution of IL-33-activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc Natl Acad Sci U S A 109(9):3451–3456

  14. Muniz VS, Baptista-Dos-Reis R, Benjamim CF, Mata-Santos HA, Pyrrho AS et al (2015) Purinergic P2Y12 receptor activation in eosinophils and the Schistosomal host response. PLoS One 10(10):e0139805

    Article  PubMed  PubMed Central  Google Scholar 

  15. von Moltke J, Ji M, Liang H-E, Locksley RM (2016) Tuft-cell-derived Il-25 regulates an intestinal Ilc2-epithelial response circuit. Nature. 529(7585):221–225

  16. Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 351(6279):1329–1333

  17. Vannella KM, Ramalingam TR, Hart KM, de Queiroz PR, Sciurba J et al (2016) Acidic chitinase primes the protective immune response to gastrointestinal nematodes. Nat Immunol 17(5):538–544

  18. Magalhães KG, Luna-Gomes T, Mesquita-Santos F, Corrêa R, Assunção LS et al (2018) Schistosomal lipids activate human eosinophils via toll-like receptor 2 and PGD2 receptors: 15-LO role in cytokine secretion. Front Immunol 9:3161

    Article  PubMed  Google Scholar 

  19. Tundup S, Srivastava L, Harn DA (2012) Polarization of host immune responses by helminth-expressed glycans. Ann N Y Acad Sci 1253:E1–E13

    Article  CAS  PubMed  Google Scholar 

  20. Osbourn M, Soares DC, Vacca F, Cohen ES, Scott IC et al (2017) HPARI protein secreted by a helminth parasite suppresses interleukin-33. Immunity 47(4):739–751.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chuah C, Jones MK, Burke ML, McManus DP, Gobert GN (2014) Cellular and chemokine-mediated regulation in schistosome-induced hepatic pathology. Trends Parasitol 30(3):141–150

    Article  CAS  PubMed  Google Scholar 

  22. Stein LH, Redding KM, Lee JJ, Nolan TJ, Schad GA, Lok JB, Abraham D (2009) Eosinophils utilize multiple chemokine receptors for chemotaxis to the parasitic nematode Strongyloides stercoralis. J Innate Immun 1(6):618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Patnode ML, Bando JK, Krummel MF, Locksley RM, Rosen SD (2014) Leukotriene B4 amplifies eosinophil accumulation in response to nematodes. J Exp Med 211(7):1281–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gazzinelli-Guimaraes PH, Nutman TB. (2018). Helminth parasites and immune regulation. F1000 23;7: https://doi.org/10.12688/f1000research.15596.1

  25. Coffman RL, Seymour BW, Hudak S, Jackson J, Rennick D (1989) Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science. 245(4915):308–310

    Article  CAS  PubMed  Google Scholar 

  26. Limaye AP, Abrams JS, Silver JE, Ottesen EA, Nutman TB (1990) Regulation of parasite-induced eosinophilia: selectively increased interleukin 5 production in helminth-infected patients. J Exp Med 172(1):399–402

    Article  CAS  PubMed  Google Scholar 

  27. Pionnier N, Sjoberg H, Furlong-Silva J, Marriott A, Halliday A, Archer J, Steven A, Taylor MJ, Turner JD (2020) Eosinophil-mediated immune control of adult filarial nematode infection can proceed in the absence of IL-4 receptor signaling. J Immunol 205(3):731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turner JD, Pionnier N, Furlong-Silva J, Sjoberg H, Cross S, Halliday A, Guimaraes AF, Cook DAN, Steven A, van Rooijen N, Allen JE, Jenkins SJ, Taylor MJ (2018) Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia. PLoS Pathog 14(3):e1006949

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frohberger SJ, Ajendra J, Surendar J, Stamminger W, Ehrens A et al (2019) Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils. Parasit Vectors 12(1):248

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie ANJ (2006) Identification of an interleukin (Il)-25-dependent cell population that provides IL-4, IL-5, and Il-13 at the onset of helminth expulsion. J Exp Med 203(4):1105–1116

  31. David JR, Vadas MA, Butterworth AE, de Brito PA, Carvalho EM, David RA, Bina JC, Andrade ZA (1980) Enhanced helminthotoxic capacity of eosinophils from patients with eosinophilia. N Engl J Med 303(20):1147–1152

    Article  CAS  PubMed  Google Scholar 

  32. Abu-Ghazaleh RI, Fujisawa T, Mestecky J, Kyle RA, Gleich GJ (1989) IgA-induced eosinophil degranulation. J Immunol 142(7):2393–2400

    Article  CAS  PubMed  Google Scholar 

  33. de Andres B, Rakasz E, Hagen M, McCormik ML, Mueller AL et al (1997) Lack of Fc-epsilon receptors on murine eosinophils: implications for the functional significance of elevated IgE and eosinophils in parasitic infections. Blood. 89(10):3826–3836

  34. Weller PF, Spencer LA (2017) Functions of tissue-resident eosinophils. Nat Rev Immunol 17(12):746–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ueki S, Tokunaga T, Melo RCN, Saito H, Honda K, Fukuchi M, Konno Y, Takeda M, Yamamoto Y, Hirokawa M, Fujieda S, Spencer LA, Weller PF (2018) Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood. 132(20):2183–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ueki S, Melo RCN, Ghiran I, Spencer LA, Dvorak AM, Weller PF (2013) Eosinophil extracellular dna trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood. 121(11):2074–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953

    Article  CAS  PubMed  Google Scholar 

  38. Ehrens A, Lenz B, Neumann A-L, Giarrizzo S, Reichwald JJ, Frohberger SJ, Stamminger W, Buerfent BC, Fercoq F, Martin C, Kulke D, Hoerauf A, Hübner MP (2021) Microfilariae trigger eosinophil extracellular DNA traps in a dectin-1-dependent manner. Cell Rep 34(2):108621

    Article  CAS  PubMed  Google Scholar 

  39. Butterworth AE, Sturrock RF, Houba V, Rees PH (1974) Antibody-dependent cell-mediated damage to schistosomula in vitro. Nature. 252(5483):503–505

  40. Kazura JW, Grove DI (1978) Stage-specific antibody-dependent eosinophil-mediated destruction of Trichinella spiralis. Nature. 274(5671):588–589

    Article  CAS  PubMed  Google Scholar 

  41. Shinkai K, Mohrs M, Locksley RM (2002) Helper T cells regulate type-2 innate immunity in vivo. Nature. 420(6917):825–829

  42. Obata-Ninomiya K, Ishiwata K, Nakano H, Endo Y, Ichikawa T, et al. 2018. Cxcr6+st2+ memory t helper 2 cells induced the expression of major basic protein in eosinophils to reduce the fecundity of helminth. Proc. Natl. Acad. Sci. USA. 115(42): E9849–E9858

  43. Hagan P, Blumenthal UJ, Chaudri M, Greenwood BM, Hayes RJ, Hodgson J, Kelly C, Knight M, Simpson AJG, Smithers SR, Wilkins HA (1987) Resistance to reinfection with Schistosoma haematobium in Gambian children: analysis of their immune responses. Trans R Soc Trop Med Hyg 81(6):938–946

    Article  CAS  PubMed  Google Scholar 

  44. Ganley-Leal LM, Mwinzi PN, Cetre-Sossah CB, Andove J, Hightower AW, Karanja DMS, Colley DG, Secor WE (2006) Correlation between eosinophils and protection against reinfection with Schistosoma mansoni and the effect of human immunodeficiency virus type 1 coinfection in humans. Infect Immun 74(4):2169–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Herrick JA, Metenou S, Makiya MA, Taylar-Williams CA, Law MA, Klion AD, Nutman TB (2015) Eosinophil-associated processes underlie differences in clinical presentation of loiasis between temporary residents and those indigenous to Loa-endemic areas. Clin Infect Dis 60(1):55–63

    Article  CAS  PubMed  Google Scholar 

  46. Camberis M, Le Gros G, Urban J. (2003). Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Curr Protoc Immunol. 2003 Aug; Chapter 19: Unit 19.12. doi: 10.1002/0471142735.im1912s55.

  47. Hoffmann W, Petit G, Schulz-Key H, Taylor D, Bain O, Le Goff L (2000) Litomosoides sigmodontis in mice: reappraisal of an old model for filarial research. Parasitol Today 16(9):387–389

    Article  CAS  PubMed  Google Scholar 

  48. Nei Y, Obata-Ninomiya K, Tsutsui H, Ishiwata K, Miyasaka M, Matsumoto K, Nakae S, Kanuka H, Inase N, Karasuyama H (2013) GATA-1 regulates the generation and function of basophils. Proc Natl Acad Sci U S A 110(46):18620–18625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Köhler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity. 4(1):15–24

    Article  CAS  PubMed  Google Scholar 

  50. Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172(5):1425–1431

    Article  CAS  PubMed  Google Scholar 

  51. Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM et al (2012) Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J Allergy Clin Immunol 130(3):572–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maizels RM, Hewitson JP (2016) Myeloid cell phenotypes in susceptibility and resistance to helminth parasite infections. Microbiol Spectr 4(6)

  53. Behm CA, Ovington KS (2000) The role of eosinophils in parasitic helminth infections: insights from genetically modified mice. Parasitol Today 16(5):202–209

    Article  CAS  PubMed  Google Scholar 

  54. Yasuda K, Kuroda E (2019) Role of eosinophils in protective immunity against secondary nematode infections. Immunol Med 42(4):148–155

    Article  PubMed  Google Scholar 

  55. Huang L, Appleton JA (2016) Eosinophils in helminth infection: defenders and dupes. Trends Parasitol 32(10):798–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ovington KS, Behm CA (1997) The enigmatic eosinophil: investigation of the biological role of eosinophils in parasitic helmint infection. Mem Inst Oswaldo Cruz 92(suppl 2):93–104

    Article  PubMed  Google Scholar 

  57. Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA, Lenkiewicz E, Colbert D, Rinaldi L, Ackerman SJ, Irvin CG, Lee NA (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305(5691):1773–1776

    Article  CAS  PubMed  Google Scholar 

  58. Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y, Orkin SH (2002) Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 195(11):1387–1395

  59. Butterworth AE, Sturrock RF, Houba V, Mahmoud AA, Sher A, Rees PH (1975) Eosinophils as mediators of antibody-dependent damage to schistosomula. Nature. 256(5520):727–729

    Article  CAS  PubMed  Google Scholar 

  60. Sher A, Coffman RL, Hieny S, Cheever AW (1990) Ablation of eosinophil and IgE responses with anti-iL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansoni in the mouse. J Immunol 145(11):3911–3916

  61. Swartz JM, Dyer KD, Cheever AW, Ramalingam T, Pesnicak L, Domachowske JB, Lee JJ, Lee NA, Foster PS, Wynn TA, Rosenberg HF (2006) Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood. 108(7):2420–2427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dent LA, Munro GH, Piper KP, Sanderson CJ, Finlay DA et al (1997) Eosinophilic interleukin 5 (IL-5) transgenic mice: eosinophil activity and impaired clearance of Schistosoma mansoni. Parasite Immunol 19(7):291–300

    Article  CAS  PubMed  Google Scholar 

  63. Freeman GL, Tominaga A, Takatsu K, Secor WE, Colley DG (1995) Elevated innate peripheral blood eosinophilia fails to augment irradiated cercarial vaccine-induced resistance to Schistosoma mansoni in IL-5 transgenic mice. J Parasitol 81(6):1010–1011

    Article  PubMed  Google Scholar 

  64. Savage AM, Colley DG (1980) The eosinophil in the inflammatory response to cercarial challenge of sensitized and chronically infected CBA/J mice. Am J Trop Med Hyg 29(6):1268–1278

    Article  CAS  PubMed  Google Scholar 

  65. Sugane K, Kusama Y, Takamoto M, Tominaga A, Takatsu K (1996) Eosinophilia, IL-5 level and recovery of larvae in IL-5 transgenic mice infected with Toxocara canis. J Helminthol 70(2):153–158

    Article  CAS  PubMed  Google Scholar 

  66. Dent LA, Daly CM, Mayrhofer G, Zimmerman T, Hallett A, Bignold LP, Creaney J, Parsons JC (1999) Interleukin-5 transgenic mice show enhanced resistance to primary infections with Nippostrongylus brasiliensis but not primary infections with Toxocara canis. Infect Immun 67(2):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takamoto M, Ovington KS, Behm CA, Sugane K, Young IG, Matthaei KI (1997) Eosinophilia, parasite burden and lung damage in Toxocara canis infection in c57bl/6 mice genetically deficient in IL-5. Immunology. 90(4):511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Parsons JC, Coffman RL, Grieve RB (1993) Antibody to interleukin 5 prevents blood and tissue eosinophilia but not liver trapping in murine larval toxocariasis. Parasite Immunol 15(9):501–508

    Article  CAS  PubMed  Google Scholar 

  69. Bruschi F, Korenaga M, Watanabe N (2008) Eosinophils and Trichinella infection: toxic for the parasite and the host? Trends Parasitol 24(10):462–467

    Article  CAS  PubMed  Google Scholar 

  70. Herndon FJ, Kayes SG (1992) Depletion of eosinophils by anti-IL-5 monoclonal antibody treatment of mice infected with Trichinella spiralis does not alter parasite burden or immunologic resistance to reinfection. J Immunol 149(11):3642–3647

    Article  CAS  PubMed  Google Scholar 

  71. Vallance BA, Matthaei KI, Sanovic S, Young IG, Collins SM (2000) Interleukin-5 deficient mice exhibit impaired host defence against challenge Trichinella spiralis infections. Parasite Immunol 22(10):487–492

    Article  CAS  PubMed  Google Scholar 

  72. Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, Lee JJ, Appleton JA (2009) Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol 182(3):1577–1583

    Article  CAS  PubMed  Google Scholar 

  73. Gebreselassie NG, Moorhead AR, Fabre V, Gagliardo LF, Lee NA, Lee JJ, Appleton JA (2012) Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol 188(1):417–425

    Article  CAS  PubMed  Google Scholar 

  74. Hokibara S, Takamoto M, Tominaga A, Takatsu K, Sugane K (1997) Marked eosinophilia in interleukin-5 transgenic mice fails to prevent Trichinella spiralis infection. J Parasitol 83(6):1186–1189

    Article  CAS  PubMed  Google Scholar 

  75. Huang L, Gebreselassie NG, Gagliardo LF, Ruyechan MC, Luber KL, Lee NA, Lee JJ, Appleton JA (2015) Eosinophils mediate protective immunity against secondary nematode infection. J Immunol 194(1):283–290

    Article  CAS  PubMed  Google Scholar 

  76. Kazura JW (1981) Host defense mechanisms against nematode parasites: destruction of newborn Trichinella spiralis larvae by human antibodies and granulocytes. J Infect Dis 143(5):712–718

    Article  CAS  PubMed  Google Scholar 

  77. Hewitson JP, Filbey KJ, Esser-von Bieren J, Camberis M, Schwartz C, Murray J, Reynolds LA, Blair N, Robertson E, Harcus Y, Boon L, Huang SCC, Yang L, Tu Y, Miller MJ, Voehringer D, le Gros G, Harris N, Maizels RM (2015) Concerted activity of igg1 antibodies and IL-4/il-25-dependent effector cells trap helminth larvae in the tissues following vaccination with defined secreted antigens, providing sterile immunity to challenge infection. PLoS Pathog 11(3):e1004676

  78. Strandmark J, Steinfelder S, Berek C, Kühl AA, Rausch S, Hartmann S (2017) Eosinophils are required to suppress Th2 responses in peyer’s patches during intestinal infection by nematodes. Mucosal Immunol 10(3):661–672

    Article  CAS  PubMed  Google Scholar 

  79. Filbey KJ, Grainger JR, Smith KA, Boon L, van Rooijen N et al (2014) Innate and adaptive type 2 immune cell responses in genetically controlled resistance to intestinal helminth infection. Immunol Cell Biol 92(5):436–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Urban JF, Katona IM, Paul WE, Finkelman FD (1991) Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proc Natl Acad Sci U S A 88(13):5513–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang L-C, Jung S-M, Chen K-Y, Wang T-Y, Li C-H (2015) Temporal-spatial pathological changes in the brains of permissive and non-permissive hosts experimentally infected with Angiostrongylus cantonensis. Exp Parasitol 157:177–184

    Article  PubMed  Google Scholar 

  82. Sugaya H, Aoki M, Yoshida T, Takatsu K, Yoshimura K (1997) Eosinophilia and intracranial worm recovery in interleukin-5 transgenic and interleukin-5 receptor α chain-knockout mice infected with Angiostrongylus cantonensis. Parasitol Res 83(6):583–590

    Article  CAS  PubMed  Google Scholar 

  83. Sasaki O, Sugaya H, Ishida K, Yoshimura K (1993) Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in the mouse. Parasite Immunol 15(6):349–354

    Article  CAS  PubMed  Google Scholar 

  84. Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M, Kanazawa H, Sunaga S, Kinashi T, Yoshimura K, Miyazaki JI, Takaki S, Takatsu K (1996) Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5r alpha-deficient mice. Immunity. 4(5):483–494

    Article  CAS  PubMed  Google Scholar 

  85. Lawrence RA (1996) Lymphatic filariasis: what mice can tell us. Parasitol Today 12(7):267–271

    Article  CAS  PubMed  Google Scholar 

  86. Le Goff L, Loke P, Ali HF, Taylor DW, Allen JE (2000) Interleukin-5 is essential for vaccine-mediated immunity but not innate resistance to a filarial parasite. Infect Immun 68(5):2513–2517

    Article  PubMed  PubMed Central  Google Scholar 

  87. Babayan SA, Read AF, Lawrence RA, Bain O, Allen JE (2010) Filarial parasites develop faster and reproduce earlier in response to host immune effectors that determine filarial life expectancy. PLoS Biol 8(10):e1000525

    Article  PubMed  PubMed Central  Google Scholar 

  88. Martin C, Le Goff L, Ungeheuer MN, Vuong PN, Bain O (2000) Drastic reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice. Infect Immun 68(6):3651–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fox EM, Morris CP, Hübner MP, Mitre E (2015) Histamine 1 receptor blockade enhances eosinophil-mediated clearance of adult filarial worms. PLoS Negl Trop Dis 9(7):e0003932

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cadman ET, Thysse KA, Bearder S, Cheung AYN, Johnston AC, Lee JJ, Lawrence RA (2014) Eosinophils are important for protection, immunoregulation and pathology during infection with nematode microfilariae. PLoS Pathog 10(3):e1003988

    Article  PubMed  PubMed Central  Google Scholar 

  91. Folkard SG, Hogarth PJ, Taylor MJ, Bianco AE (1996) Eosinophils are the major effector cells of immunity to microfilariae in a mouse model of onchocerciasis. Parasitology. 112(Pt 3):323–329

    Article  PubMed  Google Scholar 

  92. Korenaga M, Hitoshi Y, Takatsu K, Tada I (1994) Regulatory effect of anti-interleukin-5 monoclonal antibody on intestinal worm burden in a primary infection with strongyloides venezuelensis in mice. Int J Parasitol 24(7):951–957

    Article  CAS  PubMed  Google Scholar 

  93. Ovington KS, McKie K, Matthaei KI, Young IG, Behm CA (1998) Regulation of primary Strongyloides ratti infections in mice: a role for interleukin-5. Immunology. 95(3):488–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. O’Connell AE, Hess JA, Santiago GA, Nolan TJ, Lok JB et al (2011) Major basic protein from eosinophils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides stercoralis in mice. Infect Immun 79(7):2770–2778

    Article  PubMed  PubMed Central  Google Scholar 

  95. Knott ML, Matthaei KI, Giacomin PR, Wang H, Foster PS, Dent LA (2007) Impaired resistance in early secondary Nippostrongylus brasiliensis infections in mice with defective eosinophilopoeisis. Int J Parasitol 37(12):1367–1378

    Article  CAS  PubMed  Google Scholar 

  96. Voehringer D, Reese TA, Huang X, Shinkai K, Locksley RM (2006) Type 2 immunity is controlled by IL-4/il-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J Exp Med 203(6):1435–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shin EH, Osada Y, Chai JY, Matsumoto N, Takatsu K, Kojima S (1997) Protective roles of eosinophils in Nippostrongylus brasiliensis infection. Int Arch Allergy Immunol 114(Suppl 1):45–50

    Article  PubMed  Google Scholar 

  98. Strath M, Dent L, Sanderson C (1992) Infection of il5 transgenic mice with mesocestoides corti induces very high levels of il5 but depressed production of eosinophils. Exp Hematol 20(2):229–234

    CAS  PubMed  Google Scholar 

  99. Mishra PK, Li Q, Munoz LE, Mares CA, Morris EG et al (2016) Reduced leukocyte infiltration in absence of eosinophils correlates with decreased tissue damage and disease susceptibility in δdblgata mice during murine neurocysticercosis. PLoS Negl Trop Dis 10(6):e0004787

    Article  PubMed  PubMed Central  Google Scholar 

  100. Huang L, Beiting DP, Gebreselassie NG, Gagliardo LF, Ruyechan MC, Lee NA, Lee JJ, Appleton JA (2015) Eosinophils and IL-4 support nematode growth coincident with an innate response to tissue injury. PLoS Pathog 11(12):e1005347

    Article  PubMed  PubMed Central  Google Scholar 

  101. Fattah DI, Maizels RM, McLaren DJ, Spry CJ (1986) Toxocara canis: interaction of human blood eosinophils with the infective larvae. Exp Parasitol 61(3):421–431

    Article  CAS  PubMed  Google Scholar 

  102. Evans H, Killoran KE, Mitre BK, Morris CP, Kim S-Y, Mitre E (2015) Ten weeks of infection with a tissue-invasive helminth protects against local immune complex-mediated inflammation, but not cutaneous type i hypersensitivity, in previously sensitized mice. J Immunol 195(7):2973–2984

    Article  CAS  PubMed  Google Scholar 

  103. Aravindhan V, Mohan V, Surendar J, Muralidhara Rao M, Pavankumar N et al (2010) Decreased prevalence of lymphatic filariasis among diabetic subjects associated with a diminished pro-inflammatory cytokine response (cures 83). PLoS Negl Trop Dis 4(6):e707

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wiria AE, Hamid F, Wammes LJ, Prasetyani MA, Dekkers OM, May L, Kaisar MMM, Verweij JJ, Guigas B, Partono F, Sartono E, Supali T, Yazdanbakhsh M, Smit JWA (2015) Infection with soil-transmitted helminths is associated with increased insulin sensitivity. PLoS One 10(6):e0127746

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zinsou JF, Janse JJ, Honpkehedji YY, Dejon-Agobé JC, García-Tardón N et al (2020) Schistosoma haematobium infection is associated with lower serum cholesterol levels and improved lipid profile in overweight/obese individuals. PLoS Negl Trop Dis 14(7):e0008464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chu KM, Watermeyer G, Shelly L, Janssen J, May TD, Brink K, Benefeld G, Li X (2013) Childhood helminth exposure is protective against inflammatory bowel disease:' ' a case control study in south africa. Inflamm Bowel Dis 19(3):614–620

    Article  PubMed  Google Scholar 

  107. Greenwood BM, Herrick EM, Voller A (1970) Can parasitic infection suppress autoimmune disease? Proc R Soc Med 63(1):19–20

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Driss V, El Nady M, Delbeke M, Rousseaux C, Dubuquoy C et al (2016) The schistosome glutathione s-transferase p28gst, a unique helminth protein, prevents intestinal inflammation in experimental colitis through a Th2-type response with mucosal eosinophils. Mucosal Immunol 9(2):322–335

    Article  CAS  PubMed  Google Scholar 

  109. Chen Z, Andreev D, Oeser K, Krljanac B, Hueber A, Kleyer A, Voehringer D, Schett G, Bozec A (2016) Th2 and eosinophil responses suppress inflammatory arthritis. Nat Commun 7:11596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Finlay CM, Stefanska AM, Walsh KP, Kelly PJ, Boon L, Lavelle EC, Walsh PT, Mills KHG (2016) Helminth products protect against autoimmunity via innate type 2 cytokines IL-5 and IL-33, which promote eosinophilia. J Immunol 196(2):703–714

    Article  CAS  PubMed  Google Scholar 

  111. Fleming J, Hernandez G, Hartman L, Maksimovic J, Nace S, Lawler B, Risa T, Cook T, Agni R, Reichelderfer M, Luzzio C, Rolak L, Field A, Fabry Z (2019) Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: results of the HINT 2 clinical trial. Mult Scler 25(1):81–91

    Article  CAS  PubMed  Google Scholar 

  112. Voldsgaard A, Bager P, Garde E, Åkeson P, Leffers AM, Madsen CG, Kapel C, Roepstorff A, Thamsborg SM, Melbye M, Siebner H, Søndergaard HB, Sellebjerg F, Sørensen PS (2015) Trichuris suis ova therapy in relapsing multiple sclerosis is safe but without signals of beneficial effect. Mult Scler 21(13):1723–1729

    Article  CAS  PubMed  Google Scholar 

  113. Tanasescu R, Tench CR, Constantinescu CS, Telford G, Singh S, Frakich N, Onion D, Auer DP, Gran B, Evangelou N, Falah Y, Ranshaw C, Cantacessi C, Jenkins TP, Pritchard DI (2020) Hookworm treatment for relapsing multiple sclerosis: a randomized double-blinded placebo-controlled trial. JAMA Neurol 77(9):1089–1098

    Article  PubMed  Google Scholar 

  114. Schölmerich J, Fellermann K, Seibold FW, Rogler G, Langhorst J, Howaldt S, Novacek G, Petersen AM, Bachmann O, Matthes H, Hesselbarth N, Teich N, Wehkamp J, Klaus J, Ott C, Dilger K, Greinwald R, Mueller R, International TRUST-2 Study Group (2017) A randomised, double-blind, placebo-controlled trial of Trichuris suis ova in active Crohn’s disease. J Crohns Colitis 11(4):390–399

    PubMed  Google Scholar 

  115. Sandborn WJ, Elliott DE, Weinstock J, Summers RW, Landry-Wheeler A, Silver N, Harnett MD, Hanauer SB (2013) Randomised clinical trial: the safety and tolerability of trichuris suis ova in patients with Crohn’s disease. Aliment Pharmacol Ther 38(3):255–263

    Article  CAS  PubMed  Google Scholar 

  116. Summers RW, Elliott DE, Urban JF, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology. 128(4):825–832

    Article  PubMed  Google Scholar 

  117. Croese J, Giacomin P, Navarro S, Clouston A, McCann L, Dougall A, Ferreira I, Susianto A, O'Rourke P, Howlett M, McCarthy J, Engwerda C, Jones D, Loukas A (2015) Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol 135(2):508–516

    Article  CAS  PubMed  Google Scholar 

  118. Daveson AJ, Jones DM, Gaze S, McSorley H, Clouston A, Pascoe A, Cooke S, Speare R, Macdonald GA, Anderson R, McCarthy JS, Loukas A, Croese J (2011) Effect of hookworm infection on wheat challenge in celiac disease--a randomised double-blinded placebo controlled trial. PLoS One 6(3):e17366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Croese J, Miller GC, Marquart L, Llewellyn S, Gupta R, Becker L, Clouston AD, Welch C, Sidorenko J, Wallace L, Visscher PM, Remedios ML, McCarthy JS, O'Rourke P, Radford-Smith G, Loukas A, Norrie M, Masson JW, Gearry RB, Rahman T, Giacomin PR (2020) Randomized, placebo controlled trial of experimental hookworm infection for improving gluten tolerance in celiac disease. Clin Transl Gastroenterol 11(12):e00274

    Article  PubMed  PubMed Central  Google Scholar 

  120. Feary JR, Venn AJ, Mortimer K, Brown AP, Hooi D, Falcone FH, Pritchard DI, Britton JR (2010) Experimental hookworm infection: a randomized placebo-controlled trial in asthma. Clin Exp Allergy 40(2):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Feary J, Venn A, Brown A, Hooi D, Falcone FH, Mortimer K, Pritchard DI, Britton J (2009) Safety of hookworm infection in individuals with measurable airway responsiveness: a randomized placebo-controlled feasibility study. Clin Exp Allergy 39(7):1060–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sanya RE, Webb EL, Zziwa C, Kizindo R, Sewankambo M, Tumusiime J, Nakazibwe E, Oduru G, Niwagaba E, Nakawungu PK, Kabagenyi J, Nassuuna J, Walusimbi B, Andia-Biraro I, Elliott AM (2020) The effect of helminth infections and their treatment on metabolic outcomes: results of a cluster-randomized trial. Clin Infect Dis 71(3):601–613

    Article  CAS  PubMed  Google Scholar 

  123. Tahapary DL, de Ruiter K, Martin I, Brienen EAT, van Lieshout L, Cobbaert CM, Soewondo P, Djuardi Y, Wiria AE, Houwing-Duistermaat JJ, Sartono E, Smit JWA, Yazdanbakhsh M, Supali T (2017) Effect of anthelmintic treatment on insulin resistance: a cluster-randomized, placebo-controlled trial in Indonesia. Clin Infect Dis 65(5):764–771

    Article  CAS  PubMed  Google Scholar 

  124. Rajamanickam A, Munisankar S, Bhootra Y, Dolla C, Thiruvengadam K, Nutman TB, Babu S (2019) Metabolic consequences of concomitant Strongyloides stercoralis infection in patients with type 2 diabetes mellitus. Clin Infect Dis 69(4):697–704

    Article  CAS  PubMed  Google Scholar 

  125. Wu D, Molofsky AB, Liang H-E, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM (2011) Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 332(6026):243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moyat M, Coakley G, Harris NL (2019) The interplay of type 2 immunity, helminth infection and the microbiota in regulating metabolism. Clin Transl Immunology 8(11):e01089

    Article  PubMed  PubMed Central  Google Scholar 

  127. van der Zande HJP, Gonzalez MA, de Ruiter K, Wilbers RHP, García-Tardón N, van Huizen M, van Noort K, Pelgrom LR, Lambooij JM, Zawistowska-Deniziak A, Otto F, Ozir-Fazalalikhan A, van Willigen D, Welling M, Poles J, van Leeuwen F, Hokke CH, Schots A, Yazdanbakhsh M, Loke P, Guigas B (2021) The helminth glycoprotein Omega-1 improves metabolic homeostasis in obese mice through type 2 immunity-independent inhibition of food intake. FASEB J 35(2):e21331

    Article  PubMed  Google Scholar 

  128. Spector HI (1945) Loeffler’s syndrome (transient pulmonary infiltrations with eosinophilia); report of a case and a review of the available literature. Dis Chest 11:380–391

    Article  CAS  PubMed  Google Scholar 

  129. Gieseck RL, Wilson MS, Wynn TA (2018) Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18(1):62–76

    Article  CAS  PubMed  Google Scholar 

  130. Andy JJ, Ogunowo PO, Akpan NA, Odigwe CO, Ekanem IA, Esin RA (1998) Helminth associated hypereosinophilia and tropical endomyocardial fibrosis (EMF) in nigeria. Acta Trop 69(2):127–140

    Article  CAS  PubMed  Google Scholar 

  131. Carranza-Rodríguez C, San-Román-Sánchez D, Marrero-Santiago H, Hernández-Cabrera M, Gil-Guillén C et al (2017) Endomyocardial involvement in asymptomatic sub-Saharan immigrants with helminth-related eosinophilia. PLoS Negl Trop Dis 11(2):e0005403

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lambertucci JR, Drummond SC, Voieta I, de Queiróz LC, Pereira PPN, Chaves BA, Botelho PP, Prata PH, Otoni A, Vilela JF, Antunes CM (2013) An outbreak of acute Schistosoma mansoni schistosomiasis in a nonendemic area of Brazil: a report on 50 cases, including 5 with severe clinical manifestations. Clin Infect Dis 57(1):e1–e6

    Article  PubMed  Google Scholar 

  133. Pinkston P, Vijayan VK, Nutman TB, Rom WN, O’Donnell KM et al (1987) Acute tropical pulmonary eosinophilia. characterization of the lower respiratory tract inflammation and its response to therapy. J. Clin. Invest. 80(1):216–225

    Article  CAS  Google Scholar 

  134. Danaraj TJ, Pacheco G, Shanmugaratnam K, Beaver PC (1966) The etiology and pathology of eosinophilic lung (tropical eosinophilia). Am J Trop Med Hyg 15(2):183–189

    Article  CAS  PubMed  Google Scholar 

  135. Webb JK, Job CK, Gault EW (1960) Tropical eosinophilia: demonstration of microfilariae in lung, liver, and lymphnodes. Lancet. 1(7129):835–842

    Article  CAS  PubMed  Google Scholar 

  136. Sharma P, Sharma A, Srivastava M (2017) In vivo neutralization of α4 and β7 integrins inhibits eosinophil trafficking and prevents lung injury during tropical pulmonary eosinophilia in mice. Eur J Immunol 47(9):1501–1512

    Article  CAS  PubMed  Google Scholar 

  137. Sharma P, Sharma A, Ganga L, Satoeya N, Jha R, Srivastava M (2021) Acidic calcium-independent phospholipase a2 regulates eosinophil-mediated pathology during filarial manifestation of tropical pulmonary eosinophilia. J Immunol 206(4):722–736

    Article  CAS  PubMed  Google Scholar 

  138. O’Bryan L, Pinkston P, Kumaraswami V, Vijayan V, Yenokida G et al (2003) Localized eosinophil degranulation mediates disease in tropical pulmonary eosinophilia. Infect Immun 71(3):1337–1342

    Article  PubMed  PubMed Central  Google Scholar 

  139. Olds GR, Mahmoud AA (1980) Role of host granulomatous response in murine schistosomiasis mansoni. eosinophil-mediated destruction of eggs. J Clin Invest 66(6):1191–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reiman RM, Thompson RW, Feng CG, Hari D, Knight R, Cheever AW, Rosenberg HF, Wynn TA (2006) Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating il-13 activity. Infect Immun 74(3):1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schwartz C, Fallon PG (2018) Schistosoma “eggs-iting” the host: granuloma formation and egg excretion. Front Immunol 9:2492

    Article  PubMed  PubMed Central  Google Scholar 

  142. Herrick JA, Legrand F, Gounoue R, Nchinda G, Montavon C, Bopda J, Tchana SM, Ondigui BE, Nguluwe K, Fay MP, Makiya M, Metenou S, Nutman TB, Kamgno J, Klion AD (2017) Posttreatment reactions after single-dose diethylcarbamazine or ivermectin in subjects with loa loa infection. Clin Infect Dis 64(8):1017–1025

  143. Limaye AP, Ottesen EA, Kumaraswami V, Abrams JS, Regunathan J, Vijayasekaran V, Jayaraman K, Nutman TB (1993) Kinetics of serum and cellular interleukin-5 in posttreatment eosinophilia of patients with lymphatic filariasis. J Infect Dis 167(6):1396–1400

    Article  CAS  PubMed  Google Scholar 

  144. Limaye AP, Abrams JS, Silver JE, Awadzi K, Francis HF, Ottesen EA, Nutman TB (1991) Interleukin-5 and the posttreatment eosinophilia in patients with onchocerciasis. J Clin Invest 88(4):1418–1421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wanji S, Eyong E-EJ, Tendongfor N, Ngwa CJ, Esuka EN et al (2017) Ivermectin treatment of loa loa hyper-microfilaraemic baboons (papio anubis): assessment of microfilarial loads, haematological and biochemical parameters and histopathological changes following treatment. PLoS Negl Trop Dis 11(7):e0005576

    Article  PubMed  PubMed Central  Google Scholar 

  146. Legrand F, Herrick J, Makiya M, Ramanathan R, Thompson R, Rampertaap S, Stoddard J, Ware JA, Fay MP, Holland-Thomas N, Nutman TB, Klion AD (2020) A randomized, placebo-controlled, double-blind pilot study of single-dose humanized anti-il5 antibody (reslizumab) for the reduction of eosinophilia following diethylcarbamazine treatment of loa loa infection. Clin Infect Dis

  147. Fitzsimmons CM, Joseph S, Jones FM, Reimert CM, Hoffmann KF, Kazibwe F, Kimani G, Mwatha JK, Ouma JH, Tukahebwa EM, Kariuki HC, Vennervald BJ, Kabatereine NB, Dunne DW (2004) Chemotherapy for schistosomiasis in Ugandan fishermen: treatment can cause a rapid increase in interleukin-5 levels in plasma but decreased levels of eosinophilia and worm-specific immunoglobulin E. Infect Immun 72(7):4023–4030

  148. Satti MZ, Cahen P, Skov PS, Joseph S, Jones FM, Fitzsimmons C, Hoffmann KF, Reimert C, Curtis Kariuki H, Kazibwe F, Mwatha JK, Kimani G, Vennervald BJ, Ouma JH, Kabatereine NB, Dunne DW (2004) Changes in IgE- and antigen-dependent histamine-release in peripheral blood of schistosoma mansoni-infected Ugandan fishermen after treatment with praziquantel. BMC Immunol 5:6

    Article  PubMed  PubMed Central  Google Scholar 

  149. Bourke CD, Nausch N, Rujeni N, Appleby LJ, Mitchell KM, Midzi N, Mduluza T, Mutapi F (2013) Integrated analysis of innate, th1, th2, th17, and regulatory cytokines identifies changes in immune polarisation following treatment of human schistosomiasis. J Infect Dis 208(1):159–169

  150. Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA (2010) Eosinophils in health and disease: the liar hypothesis. Clin Exp Allergy 40(4):563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cheever AW, Xu YH, Sher A, Macedonia JG (1991) Analysis of egg granuloma formation in Schistosoma japonicum-infected mice treated with antibodies to interleukin-5 and gamma interferon. Infect Immun 59(11):4071–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Betts CJ, Else KJ (1999) Mast cells, eosinophils and antibody-mediated cellular cytotoxicity are not critical in resistance to Trichuris muris. Parasite Immunol 21(1):45–52

    Article  CAS  PubMed  Google Scholar 

  153. Svensson M, Bell L, Little MC, DeSchoolmeester M, Locksley RM, Else KJ (2011) Accumulation of eosinophils in intestine-draining mesenteric lymph nodes occurs after trichuris muris infection. Parasite Immunol 33(1):1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lange AM, Yutanawiboonchai W, Scott P, Abraham D (1994) IL-4- and IL-5-dependent protective immunity to Onchocerca volvulus infective larvae in BALB/cByJ mice. J Immunol 153(1):205–211

    Article  CAS  PubMed  Google Scholar 

  155. Vallance BA, Blennerhassett PA, Deng Y, Matthaei KI, Young IG, Collins SM (1999) IL-5 contributes to worm expulsion and muscle hypercontractility in a primary T. spiralis infection. Am J Phys 277(2):G400–G408

    CAS  Google Scholar 

  156. Rotman HL, Yutanawiboonchai W, Brigandi RA, Leon O, Gleich GJ, Nolan TJ, Schad GA, Abraham D (1996) Strongyloides stercoralis: eosinophil-dependent immune-mediated killing of third stage larvae in BALB/cByJ mice. Exp Parasitol 82(3):267–278

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. James Hewitson and Stephen Davies for insightful comments on the manuscript.

Availability of data and materials

Not applicable

Code availability

Not applicable

Funding

The research was funded in part by the Intramural Research Program of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

Both EM and ADK participated in the writing of this manuscript.

Corresponding author

Correspondence to A. D. Klion.

Ethics declarations

Conflict of Interest

None. Neither EM, ADK, nor their family members have a financial interest in any commercial product, service, or organization providing financial support for this research.

Disclaimer

The opinions and assertions expressed herein are those of the author(s) and do not necessarily reflect the official policy or position of the Uniformed Services University or the Department of Defense.

Additional information

This article is a contribution to the Special issue on: Eosinophils - Guest Editor: Hans-Uwe Simon

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitre, E., Klion, A.D. Eosinophils and helminth infection: protective or pathogenic?. Semin Immunopathol 43, 363–381 (2021). https://doi.org/10.1007/s00281-021-00870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-021-00870-z

Keywords

Navigation