Skip to main content
Log in

Discovery and initial characterization of Th9 cells: the early years

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The launch of the Th1/Th2 concept represented a decisive breakthrough concerning our understanding of how very diverse immune reactions can be regulated by functionally different T helper subpopulations via the secretion of different panels of cytokines. In this context, IL-9 was identified to be produced by T helper cell lines in addition to Th2 cytokines IL-4 and IL-5. Detailed analyses revealed that IL-9 production of mouse CD4+ T helper cells was dependent on a combination of IL-2, IL-4, and TGF-β. Roughly a decade later, it was found that TGF-β can also induce the development of CD4+ Treg cells. This finding engendered a series of studies on the central role of TGF-β for cytokine-mediated T helper cell differentiation which elucidated that IL-4 curbed the Treg cell-promoting effect of TGF-β while TGF-β impaired the Th2-promoting capacity of IL-4. Instead, TGF-β in combination with IL-4 induced the development of CD4+ T helper cells that preferentially produced IL-9 and that were different from Th2 cells which originally were thought to be the main source of IL-9. In addition, adoptive transfer of such IL-9-producing CD4+ T helper cells was shown to cause the development of colitis and peripheral neuritis. Hence, the unique cytokine expression pattern in combination with the inflammatory in vivo phenotype led to the designation of Th9 cells as a new CD4+ T helper subpopulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. ConA is a lectin (carbohydrate-binding protein) obtained from Canavalia ensiformis (Jack Bean) and represents a polyclonal T cell stimulator/T cell mitogen.

  2. PAGE: Polyacrylamide gel electrophoresis; common analytical technique to determine the molecular weight of an unknown protein.

  3. PPD: Glycerol extract of Mycobacterium tuberculosis [22].

  4. LNC.4: lymph node cells expanded in the presence of IL-4 that exhibited a Th2 phenotype.

  5. Accessory cells: irradiated spleen cells or bone marrow-derived macrophages.

References

  1. Miller JFAP (2011) The golden anniversary of the thymus. Nat Rev Immunol 11:489–495. doi:10.1038/nri2993

    Article  CAS  PubMed  Google Scholar 

  2. Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    CAS  PubMed  Google Scholar 

  3. Cherwinski H, Schumacher J, Brown K, Mosmann T (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 166:1229–1244

    Article  CAS  PubMed  Google Scholar 

  4. Cher DJ, Mosmann TR (1987) Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol 138:3688–3694

    CAS  PubMed  Google Scholar 

  5. Uyttenhove C, Simpson RJ, Van Snick J (1988) Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proceedings of the National Academy of Sciences of the United States of America 85:6934–6938.

  6. Van Snick J, Goethals A, Renauld JC et al (1989) Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J Exp Med 169:363–368

    Article  CAS  PubMed  Google Scholar 

  7. Spaeth E, Rude E (1985) Development of T cell clones reactive to two defined restriction elements in conjunction with two defined epitopes of antigen. Eur J Immunol 15:1177–1183. doi:10.1002/eji.1830151207

    Article  CAS  PubMed  Google Scholar 

  8. Schmitt E, van Brandwijk R, Van Snick J et al (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19:2167–2170

    Article  CAS  PubMed  Google Scholar 

  9. Hultner L, Moeller J, Schmitt E et al (1989) Thiol-sensitive mast cell lines derived from mouse bone marrow respond to a mast cell growth-enhancing activity different from both IL-3 and IL-4. J Immunol 142:3440–3446

    CAS  PubMed  Google Scholar 

  10. Moeller J, Hultner L, Schmitt E, Dormer P (1989) Partial purification of a mast cell growth-enhancing activity and its separation from IL-3 and IL-4. J Immunol 142:3447–3451

    CAS  PubMed  Google Scholar 

  11. Hultner L, Druez C, Moeller J et al (1990) Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur J Immunol 20:1413–1416

    Article  CAS  PubMed  Google Scholar 

  12. Yang YC, Ricciardi S, Ciarletta A et al (1989) Expression cloning of cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 74:1880–1884

    CAS  PubMed  Google Scholar 

  13. Druez C, Coulie P, Uyttenhove C, Van Snick J (1990) Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol 145:2494–2499

    CAS  PubMed  Google Scholar 

  14. Renauld JC, Druez C, Kermouni A, et al. (1992) Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proceedings of the National Academy of Sciences of the United States of America 89:5690–5694

  15. Kimura Y, Takeshita T, Kondo M et al (1995) Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int Immunol 7:115–120

    Article  CAS  PubMed  Google Scholar 

  16. Malka Y, Hornakova T, Royer Y et al (2008) Ligand-independent homomeric and heteromeric complexes between interleukin-2 or −9 receptor subunits and the gamma chain. J Biol Chem 283:33569–33577. doi:10.1074/jbc.M803125200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Demoulin JB, Uyttenhove C, Van Roost E et al (1996) A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol 16:4710–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Knoops L, Renauld J-C (2004) IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors 22:207–215. doi:10.1080/08977190410001720879

    Article  CAS  PubMed  Google Scholar 

  19. Renauld JC, Goethals A, Houssiau F et al (1990) Human P40/IL-9. Expression in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol 144:4235–4241

    CAS  PubMed  Google Scholar 

  20. Houssiau FA, Renauld JC, Fibbe WE, Van Snick J (1992) IL-2 dependence of IL-9 expression in human T lymphocytes. J Immunol 148:3147–3151

    CAS  PubMed  Google Scholar 

  21. Houssiau FA, Schandene L, Stevens M et al (1995) A cascade of cytokines is responsible for IL-9 expression in human T cells. Involvement of IL-2, IL-4, and IL-10. J Immunol 154:2624–2630

    CAS  PubMed  Google Scholar 

  22. Seibert FB, Pedersen KO, Tiselius A (1938) Molecular weight, electrochemical and biological properties of tuberculin protein and polysaccharide molecules. J Exp Med 68:413–438. doi:10.1084/jem.68.3.413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmitt E, van Brandwijk R, Fischer HG, Rude E (1990) Establishment of different T cell sublines using either interleukin 2 or interleukin 4 as growth factors. Eur J Immunol 20:1709–1715

    Article  CAS  PubMed  Google Scholar 

  24. Schmitt E, Beuscher HU, Huels C et al (1991) IL-1 serves as a secondary signal for IL-9 expression. J Immunol 147:3848–3854

    CAS  PubMed  Google Scholar 

  25. Brabletz T, Pfeuffer I, Schorr E et al (1993) Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site. Mol Cell Biol 13:1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siepl C, Bodmer S, Frei K et al (1988) The glioblastoma-derived T cell suppressor factor/transforming growth factor-beta 2 inhibits T cell growth without affecting the interaction of interleukin 2 with its receptor. Eur J Immunol 18:593–600. doi:10.1002/eji.1830180416

    Article  CAS  PubMed  Google Scholar 

  27. Schmitt E, Germann T, Goedert S et al (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153:3989–3996

    CAS  PubMed  Google Scholar 

  28. Gessner A, Blum H, Rollinghoff M (1993) Differential regulation of IL-9-expression after infection with Leishmania major in susceptible and resistant mice. Immunobiology 189:419–435. doi:10.1016/S0171-2985(11)80414-6

    Article  CAS  PubMed  Google Scholar 

  29. Sad S, Mosmann TR (1994) Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J Immunol 153:3514–3522

    CAS  PubMed  Google Scholar 

  30. Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fantini MC, Becker C, Monteleone G et al (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol 172:5149–5153. doi:10.4049/jimmunol.172.9.5149

    Article  CAS  PubMed  Google Scholar 

  32. Lu L-F, Lind EF, Gondek DC et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002

    Article  CAS  PubMed  Google Scholar 

  33. Awasthi A, Carrier Y, Peron JPS et al (2007) A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells. Nat Immunol 8:1380–1389. doi:10.1038/ni1541

    Article  CAS  PubMed  Google Scholar 

  34. Stumhofer JS, Silver JS, Laurence A et al (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8:1363–1371. doi:10.1038/ni1537

    Article  CAS  PubMed  Google Scholar 

  35. Bettelli E, Carrier Y, Gao W et al (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238. doi:10.1038/nature04753

    Article  CAS  PubMed  Google Scholar 

  36. Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24:179–189. doi:10.1016/j.immuni.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  37. Veldhoen M, Uyttenhove C, Van Snick J et al (2008) Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346. doi:10.1038/ni.1659

    Article  CAS  PubMed  Google Scholar 

  38. Dardalhon V, Awasthi A, Kwon H et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9:1347–1355. doi:10.1038/ni.1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chang H-C, Sehra S, Goswami R et al (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527–534. doi:10.1038/ni.1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Staudt V, Bothur E, Klein M et al (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33:192–202. doi:10.1016/j.immuni.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  41. Horka H, Staudt V, Klein M et al (2012) The tick salivary protein sialostatin L inhibits the Th9-derived production of the asthma-promoting cytokine IL-9 and is effective in the prevention of experimental asthma. J Immunol 188:2669–2676. doi:10.4049/jimmunol.1100529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol. doi:10.1038/nri3824

    PubMed  PubMed Central  Google Scholar 

  43. Purwar R, Schlapbach C, Xiao S et al (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18:1248–1253. doi:10.1038/nm.2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu Y, Hong S, Li H et al (2012) Th9 cells promote antitumor immune responses in vivo. J Clin Invest 122:4160–4171. doi:10.1172/JCI65459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Karen Lingnau and Dr. Matthias Klein for the critical reading of our manuscript.

Tobias Bopp and Edgar Schmitt are supported by the Deutsche Forschungsgemeinschaft (DFG), grants SCHM 1014/5-1 (T.B. and E.S.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Schmitt.

Additional information

This article is a contribution to the special issue on Th9 Cells in Immunity and Immunopathological Diseases - Guest Editors Mark Kaplan and Markus Neurathâ

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmitt, E., Bopp, T. Discovery and initial characterization of Th9 cells: the early years. Semin Immunopathol 39, 5–10 (2017). https://doi.org/10.1007/s00281-016-0610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0610-0

Keywords

Navigation