Skip to main content

Advertisement

Log in

Th9 cells in inflammatory bowel diseases

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases are chronic, relapsing, immunologically mediated disorders of the gastrointestinal tract. Emerging evidence suggests a critical functional role of transcription factors and T cell-related cytokines in ulcerative colitis and Crohn’s disease. Gut-residing T cells from patients with inflammatory bowel disease produce high amounts of IL-9. Experimental models of colitis highlighted that IL-9-producing T cells critically interfered with an intact barrier function of the intestinal epithelium by impacting cellular proliferation and tight junction molecules. The blockade of IL-9 was suited to significantly ameliorate the disease activity and severity in experimental models of inflammatory bowel disease thereby suggesting that targeting IL-9 might function as a novel targeted approach for therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CD:

Crohn’s disease

UC:

Ulcerative colitis

IBD:

Inflammatory bowel disease

References

  1. Danese S, Fiocchi C (2011) Ulcerative colitis. N Engl J Med 365:1713–1725

    Article  CAS  PubMed  Google Scholar 

  2. Baumgart DC, Sandborn WJ (2012) Crohn's disease. Lancet 380:1590–1605

    Article  PubMed  Google Scholar 

  3. Rieder F, Zimmermann EM, Remzi FH, Sandborn WJ (2013) Crohn's disease complicated by strictures: a systematic review. Gut 62:1072–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Soderlund S, Granath F, Brostrom O, Karlen P, Lofberg R, Ekbom A et al (2010) Inflammatory bowel disease confers a lower risk of colorectal cancer to females than to males. Gastroenterology 138:1697–1703

    Article  PubMed  Google Scholar 

  5. Thomas T, Abrams KA, Robinson RJ, Mayberry JF (2007) Meta-analysis: cancer risk of low-grade dysplasia in chronic ulcerative colitis. Aliment Pharmacol Ther 25:657–668

    Article  CAS  PubMed  Google Scholar 

  6. Kiesslich R, Fritsch J, Holtmann M, Koehler HH, Stolte M, Kanzler S et al (2003) Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 124:880–888

    Article  PubMed  Google Scholar 

  7. Rutter MD, Saunders BP, Schofield G, Forbes A, Price AB, Talbot IC (2004) Pancolonic indigo carmine dye spraying for the detection of dysplasia in ulcerative colitis. Gut 53:256–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogler G (2013) Chronic ulcerative colitis and colorectal cancer. Cancer Lett 345(2):235–241

    Article  PubMed  Google Scholar 

  9. Foersch S, Waldner MJ, Neurath MF (2012) Colitis and colorectal cancer. Dig Dis 30:469–476

    Article  PubMed  Google Scholar 

  10. Bernstein CN, Blanchard JF, Rawsthorne P, Yu N (2001) The prevalence of extraintestinal diseases in inflammatory bowel disease: a population-based study. Am J Gastroenterol 96:1116–1122

    Article  CAS  PubMed  Google Scholar 

  11. Peyrin-Biroulet L, Loftus EV Jr, Colombel JF, Sandborn WJ (2011) Long-term complications, extraintestinal manifestations, and mortality in adult Crohn's disease in population-based cohorts. Inflamm Bowel Dis 17:471–478

    Article  PubMed  Google Scholar 

  12. Agrez MV, Valente RM, Pierce W, Melton LJ 3rd, van Heerden JA, Beart RW Jr (1982) Surgical history of Crohn’s disease in a well-defined population. Mayo Clinic proceedings Mayo Clinic 57:747–752

    CAS  Google Scholar 

  13. Danese S, Colombel JF, Peyrin-Biroulet L, Rutgeerts P, Reinisch W (2013) Review article: the role of anti-TNF in the management of ulcerative colitis—past, present and future. Aliment Pharmacol Ther 37:855–866

    Article  CAS  PubMed  Google Scholar 

  14. Beaugerie L, Seksik P, Nion-Larmurier I, Gendre JP, Cosnes J (2006) Predictors of Crohn’s disease. Gastroenterology 130:650–656

    Article  PubMed  Google Scholar 

  15. Joossens M, Simoens M, Vermeire S, Bossuyt X, Geboes K, Rutgeerts P (2007) Contribution of genetic and environmental factors in the pathogenesis of Crohn’s disease in a large family with multiple cases. Inflamm Bowel Dis 13:580–584

    Article  PubMed  Google Scholar 

  16. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY et al (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parkes M (2012) The genetics universe of Crohn's disease and ulcerative colitis. Dig Dis 30(Suppl 1):78–81

    Article  PubMed  Google Scholar 

  18. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T et al (2016) Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet 387:156–167

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lakatos PL, Szamosi T, Lakatos L (2007) Smoking in inflammatory bowel diseases: good, bad or ugly? World journal of gastroenterology : WJG 13:6134–6139

    Article  PubMed  PubMed Central  Google Scholar 

  20. Louis E, Michel V, Hugot JP, Reenaers C, Fontaine F, Delforge M et al (2003) Early development of stricturing or penetrating pattern in Crohn’s disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut 52:552–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loftus EV Jr (2004) Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126:1504–1517

    Article  PubMed  Google Scholar 

  22. Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14:329–342

    Article  CAS  PubMed  Google Scholar 

  23. Kiesslich R, Duckworth CA, Moussata D, Gloeckner A, Lim LG, Goetz M et al (2012) Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 61:1146–1153

    Article  CAS  PubMed  Google Scholar 

  24. Neurath MF, Finotto S, Glimcher LH (2002) The role of Th1/Th2 polarization in mucosal immunity. Nat Med 8:567–573

    Article  CAS  PubMed  Google Scholar 

  25. Calderon-Gomez E, Bassolas-Molina H, Mora-Buch R, Dotti I, Planell N, Esteller M et al (2016) Commensal-specific CD4(+) cells from patients with Crohn’s disease have a T-Helper 17 inflammatory profile. Gastroenterology 151:489–500 e483

    Article  CAS  PubMed  Google Scholar 

  26. Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 166:1229–1244

    Article  CAS  PubMed  Google Scholar 

  27. Ho IC, Tai TS, Pai SY (2009) GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 9:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  CAS  PubMed  Google Scholar 

  29. Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH (2002) Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295:338–342

    Article  CAS  PubMed  Google Scholar 

  30. Yang XO, Angkasekwinai P, Zhu J, Peng J, Liu Z, Nurieva R et al (2009) Requirement for the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage commitment. Nat Immunol 10:1260–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH et al (2002) Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295:336–338

    Article  CAS  PubMed  Google Scholar 

  32. Kamada N, Hisamatsu T, Okamoto S, Sato T, Matsuoka K, Arai K et al (2005) Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J Immunol 175:6900–6908

    Article  CAS  PubMed  Google Scholar 

  33. Uyttenhove C, Simpson RJ, Van Snick J (1988) Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc Natl Acad Sci U S A 85:6934–6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Snick J, Goethals A, Renauld JC, Van Roost E, Uyttenhove C, Rubira MR et al (1989) Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J Exp Med 169:363–368

    Article  CAS  PubMed  Google Scholar 

  35. Schmitt E, Van Brandwijk R, Van Snick J, Siebold B, Rude E (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19:2167–2170

    Article  CAS  PubMed  Google Scholar 

  36. Moeller J, Hultner L, Schmitt E, Breuer M, Dormer P (1990) Purification of MEA, a mast cell growth-enhancing activity, to apparent homogeneity and its partial amino acid sequencing. J Immunol 144:4231–4234

    CAS  PubMed  Google Scholar 

  37. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA et al (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9:1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmitt E, Germann T, Goedert S, Hoehn P, Huels C, Koelsch S et al (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153:3989–3996

    CAS  PubMed  Google Scholar 

  39. Kaplan MH (2013) Th9 cells: differentiation and disease. Immunol Rev 252:104–115

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kaplan MH, Hufford MM, Olson MR (2015) The development and in vivo function of T helper 9 cells. Nat Rev Immunol 15:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J et al (2008) Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346

    Article  CAS  PubMed  Google Scholar 

  42. Schmitt E, Beuscher HU, Huels C, Monteyne P, van Brandwijk R, van Snick J et al (1991) IL-1 serves as a secondary signal for IL-9 expression. J Immunol 147:3848–3854

    CAS  PubMed  Google Scholar 

  43. Uyttenhove C, Brombacher F, Van Snick J (2010) TGF-beta interactions with IL-1 family members trigger IL-4-independent IL-9 production by mouse CD4(+) T cells. Eur J Immunol 40:2230–2235

    Article  CAS  PubMed  Google Scholar 

  44. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N et al (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33:192–202

    Article  CAS  PubMed  Google Scholar 

  45. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL et al (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Russell SM, Keegan AD, Harada N, Nakamura Y, Noguchi M, Leland P et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262:1880–1883

    Article  CAS  PubMed  Google Scholar 

  47. Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X et al (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262:1877–1880

    Article  CAS  PubMed  Google Scholar 

  48. Giri JG, Kumaki S, Ahdieh M, Friend DJ, Loomis A, Shanebeck K et al (1995) Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 14:3654–3663

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D et al (2001) Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 167:1–5

    Article  CAS  PubMed  Google Scholar 

  50. Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61:918–932

    Article  CAS  PubMed  Google Scholar 

  51. Strober W, Fuss I, Mannon P (2007) The fundamental basis of inflammatory bowel disease. J Clin Invest 117:514–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zundler S, Schillinger D, Fischer A, Atreya R, Lopez-Posadas R, Watson A et al (2016) Blockade of alphaEbeta7 integrin suppresses accumulation of CD8+ and Th9 lymphocytes from patients with IBD in the inflamed gut in vivo. Gut. doi:10.1136/gutjnl-2016-312439

    Google Scholar 

  53. Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307:1920–1925

    Article  CAS  PubMed  Google Scholar 

  54. Strober W, Zhang F, Kitani A, Fuss I, Fichtner-Feigl S (2010) Proinflammatory cytokines underlying the inflammation of Crohn's disease. Curr Opin Gastroenterol 26:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Atreya R, Neurath MF (2005) Involvement of IL-6 in the pathogenesis of inflammatory bowel disease and colon cancer. Clinical reviews in allergy & immunology 28:187–196

    Article  CAS  Google Scholar 

  56. Atreya R, Zimmer M, Bartsch B, Waldner MJ, Atreya I, Neumann H et al (2011) Antibodies against tumor necrosis factor (TNF) induce T-cell apoptosis in patients with inflammatory bowel diseases via TNF receptor 2 and intestinal CD14(+) macrophages. Gastroenterology 141:2026–2038

    Article  CAS  PubMed  Google Scholar 

  57. Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H et al (2002) The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J Exp Med 195:1129–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA et al (1996) Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 157:1261–1270

    CAS  PubMed  Google Scholar 

  59. Sandborn WJ, Hanauer SB (1999) Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety. Inflamm Bowel Dis 5:119–133

    Article  CAS  PubMed  Google Scholar 

  60. Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, Katz S et al (2008) A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology 135:1130–1141

    Article  CAS  PubMed  Google Scholar 

  61. Mudter J, Amoussina L, Schenk M, Yu J, Brustle A, Weigmann B et al (2008) The transcription factor IFN regulatory factor-4 controls experimental colitis in mice via T cell-derived IL-6. J Clin Invest 118:2415–2426

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Popp V, Gerlach K, Mott S, Turowska A, Garn H, Atreya R et al (2016) Rectal delivery of a DNAzyme that specifically blocks the transcription factor GATA3 reduces colitis in mice. Gastroenterology. doi:10.1053/j.gastro.2016.09.005

    Google Scholar 

  63. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S et al (2014) TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 15:676–686

    Article  CAS  PubMed  Google Scholar 

  64. Nalleweg N, Chiriac MT, Podstawa E, Lehmann C, Rau TT, Atreya R et al (2015) IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 64:743–755

    Article  CAS  PubMed  Google Scholar 

  65. Murakami-Satsutani N, Ito T, Nakanishi T, Inagaki N, Tanaka A, Vien PT et al (2014) IL-33 promotes the induction and maintanance of Th2 immune response by enhancing the function of OX40 ligand. Allergol Int 63(3):443–455

    Article  CAS  PubMed  Google Scholar 

  66. Blom L, Poulsen BC, Jensen BM, Hansen A, Poulsen LK (2011) IL-33 induces IL-9 production in human CD4+ T cells and basophils. PLoS One 6:e21695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Seidelin JB, Bjerrum JT, Coskun M, Widjaya B, Vainer B, Nielsen OH (2010) IL-33 is upregulated in colonocytes of ulcerative colitis. Immunol Lett 128:80–85

    Article  CAS  PubMed  Google Scholar 

  68. Pastorelli L, Garg RR, Hoang SB, Spina L, Mattioli B, Scarpa M et al (2010) Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proc Natl Acad Sci U S A 107:8017–8022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Defendenti C, Sarzi-Puttini P, Saibeni S, Bollani S, Bruno S, Almasio PL et al (2015) Significance of serum Il-9 levels in inflammatory bowel disease. Int J Immunopathol Pharmacol 28:569–575

    Article  PubMed  Google Scholar 

  70. Mannon P, Reinisch W (2012) Interleukin 13 and its role in gut defence and inflammation. Gut 61:1765–1773

    Article  CAS  PubMed  Google Scholar 

  71. Wirtz S, Neufert C, Weigmann B, Neurath MF (2007) Chemically induced mouse models of intestinal inflammation. Nat Protoc 2:541–546

    Article  CAS  PubMed  Google Scholar 

  72. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL (1994) Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1:553–562

    Article  CAS  PubMed  Google Scholar 

  73. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL (1996) A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 183:2669–2674

    Article  CAS  PubMed  Google Scholar 

  74. Weigmann B, Lehr HA, Yancopoulos G, Valenzuela D, Murphy A, Stevens S et al (2008) The transcription factor NFATc2 controls IL-6-dependent T cell activation in experimental colitis. J Exp Med 205:2099–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–638

    Article  CAS  PubMed  Google Scholar 

  76. Kim HS, Chung DH (2013) IL-9-producing invariant NKT cells protect against DSS-induced colitis in an IL-4-dependent manner. Mucosal immunology 6:347–357

    Article  CAS  PubMed  Google Scholar 

  77. Yuan A, Yang H, Qi H, Cui J, Hua W, Li C et al (2015) IL-9 antibody injection suppresses the inflammation in colitis mice. Biochem Biophys Res Commun 468:921–926

    Article  CAS  PubMed  Google Scholar 

  78. Gerlach K, McKenzie AN, Neurath MF, Weigmann B (2015) IL-9 regulates intestinal barrier function in experimental T cell-mediated colitis. Tissue barriers 3:e983777

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the DFG grant WE4656/2-2, SFB 1181/B02 and Clinical Research Unit 257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus F. Neurath.

Additional information

This article is a contribution to the special issue on Th9 Cells in Immunity and Immunopathological Diseases - Guest Editors: Mark Kaplan and Markus Neurath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weigmann, B., Neurath, M.F. Th9 cells in inflammatory bowel diseases. Semin Immunopathol 39, 89–95 (2017). https://doi.org/10.1007/s00281-016-0603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0603-z

Keywords

Navigation