Skip to main content

Advertisement

Log in

Anti-regulatory T cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase (TDO), programmed death-ligand 1 (PD-L1), and forkhead box P3 (Foxp3). These proteins are highly expressed in professional antigen-presenting cells under various physiological conditions, such as inflammation and stress. Therefore, self-reactive T cells that recognize such targets may be activated due to the strong activation signal given by their cognate targets. The current review describes the existing knowledge regarding these self-reactive anti-Tregs, providing examples of antigen-specific anti-Tregs and discussing their possible roles in immune homeostasis and their potential future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sakaguchi S (2006) Regulatory T cells. Springer Semin Immunopathol 28:1–2

    Article  PubMed  Google Scholar 

  2. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT et al (2008) Selective miRNA disruption in T reg cells leads to uncontrolled autoimmunity. J Exp Med 205:1983–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brusko TM, Putnam AL, Bluestone JA (2008) Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 223:371–390

    Article  CAS  PubMed  Google Scholar 

  4. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50

    Article  CAS  PubMed  Google Scholar 

  5. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N et al (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM et al (2007) The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450:566–569

    Article  CAS  PubMed  Google Scholar 

  7. Andersen MH (2015) Immune regulation by self-recognition: novel possibilities for anticancer immunotherapy. J Natl Cancer Inst 107:154

    Article  Google Scholar 

  8. Kumar V, Sercarz EE (1993) The involvement of T cell receptor peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease. J Exp Med 178:909–916

    Article  CAS  PubMed  Google Scholar 

  9. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22:633–642

    Article  CAS  PubMed  Google Scholar 

  10. Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM et al (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855

    Article  CAS  PubMed  Google Scholar 

  11. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117:1147–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Batabyal D, Yeh SR (2007) Human tryptophan dioxygenase: a comparison to indoleamine 2,3-dioxygenase. J Am Chem Soc 19:15690–15701

    Article  Google Scholar 

  13. Prendergast GC (2008) Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27:3889–3900

    Article  CAS  PubMed  Google Scholar 

  14. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  CAS  PubMed  Google Scholar 

  15. Romani L, Bistoni F, Perruccio K, Montagnoli C, Gaziano R, Bozza S et al (2006) Thymosin alpha1 activates dendritic cell tryptophan catabolism and establishes a regulatory environment for balance of inflammation and tolerance. Blood 108:2265–2274

    Article  CAS  PubMed  Google Scholar 

  16. Sorensen RB, Berge-Hansen L, Junker N, Hansen CA, Hadrup SR, Schumacher TN et al (2009) The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase. PLoS One 4:e6910

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sorensen RB, Hadrup SR, Svane IM, Hjortso MC, thor Straten P, MH A (2011) Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators. Blood 117:2200–2210

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sorensen RB, Kollgaard T, Andersen RS, van den Berg JH, Svane IM, thor Straten P et al (2011) Spontaneous cytotoxic T-cell reactivity against indoleamine 2,3-dioxygenase-2. Cancer Res 71:2038–2044

    Article  CAS  PubMed  Google Scholar 

  19. Munir S, Larsen SK, Iversen TZ, Donia M, Klausen TW, Svane IM et al (2012) Natural CD4(+) T-cell responses against indoleamine 2,3-dioxygenase. PLoS One 7:e34568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersen MH (2012) The specific targeting of immune regulation: T-cell responses against indoleamine 2,3-dioxygenase. Cancer Immunol Immunother 61:1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Andersen MH (2012) CD4 responses against IDO. Oncoimmunology 1:1211–1212

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE et al (2012) IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov 2:722–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu J, Du W, Yan F, Wang Y, Li H, Cao S et al (2013) Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190:3783–3797

    Article  CAS  PubMed  Google Scholar 

  24. Bronte V, Zanovello P (2005) Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5:641–654

    Article  CAS  PubMed  Google Scholar 

  25. Mussai F, De SC, Abu-Dayyeh I, Booth S, Quek L, McEwen-Smith RM et al (2013) Acute myeloid leukemia creates an arginase-dependent immunosuppressive microenvironment. Blood 122:749–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kozako T, Yoshimitsu M, Fujiwara H, Masamoto I, Horai S, White Y et al (2009) PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia 23:375–382

    Article  CAS  PubMed  Google Scholar 

  27. Atanackovic D, Luetkens T, Kroger N (2013) Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia. doi:10.1038/leu.2013.310

    Google Scholar 

  28. Yang H, Bueso-Ramos C, Dinardo C, Estecio MR, Davanlou M, Geng QR et al (2014) Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia 28:1280–1288

    Article  CAS  PubMed  Google Scholar 

  29. Krejsgaard T, Odum N, Geisler C, Wasik MA, Woetmann A (2012) Regulatory T cells and immunodeficiency in mycosis fungoides and Sezary syndrome. Leukemia 26:424–432

    Article  CAS  PubMed  Google Scholar 

  30. Kollgaard T, Petersen SL, Hadrup SR, Masmas TN, Seremet T, Andersen MH et al (2005) Evidence for involvement of clonally expanded CD8+ T cells in anticancer immune responses in CLL patients following nonmyeloablative conditioning and hematopoietic cell transplantation. Leukemia 19:2273–2280

    Article  CAS  PubMed  Google Scholar 

  31. Ame-Thomas P, Le PJ, Yssel H, Caron G, Pangault C, Jean R et al (2012) Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia 26:1053–1063

    Article  CAS  PubMed  Google Scholar 

  32. van de Donk NW, Kamps S, Mutis T, Lokhorst HM (2012) Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma. Leukemia 26:199–213

    Article  PubMed  Google Scholar 

  33. Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al (2013) Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 27:464–472

    Article  CAS  PubMed  Google Scholar 

  34. Greaves P, Gribben JG (2013) The role of B7 family molecules in hematologic malignancy. Blood 121:734–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Munir S, Andersen GH, Met O, Donia M, Frosig TM, Larsen SK et al (2013) HLA-restricted cytotoxic T cells that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Res 73:1674–1776

    Article  Google Scholar 

  38. Munir S, Andersen GH, Woetmann A, Odum N, Becker JC, Andersen MH (2013) Cutaneous T cell lymphoma cells are targets for immune checkpoint ligand PD-L1-specific, cytotoxic T cells. Leukemia 27:2251–2253

    Article  CAS  PubMed  Google Scholar 

  39. Minami T, Minami T, Shimizu N, Yamamoto Y, De VM, Nozawa M et al (2015) Identification of programmed death ligand 1-derived peptides capable of inducing cancer-reactive cytotoxic T lymphocytes from HLA-A24+ patients with renal cell carcinoma. J Immunother 38:285–291

    Article  CAS  PubMed  Google Scholar 

  40. Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G et al (2003) Costimulating aberrant T cell responses by B7-H1 autoantibodies in rheumatoid arthritis. J Clin Invest 111:363–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nair S, Boczkowski D, Fassnacht M, Pisetsky D, Gilboa E (2007) Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity. Cancer Res 67:371–380

    Article  CAS  PubMed  Google Scholar 

  42. van Es T, van Puijvelde GH, Foks AC, Habets KL, Bot I, Gilboa E et al (2010) Vaccination against Foxp3(+) regulatory T cells aggravates atherosclerosis. Atherosclerosis 209:74–80

    Article  PubMed  Google Scholar 

  43. Larsen SK, Munir S, Woetmann A, Froesig TM, Odum N, Svane IM et al (2013) Functional characterization of Foxp3-specific spontaneous immune responses. Leukemia 27:2332–2340

    Article  CAS  PubMed  Google Scholar 

  44. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  45. Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S et al (2006) Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 66:5716–5722

    Article  CAS  PubMed  Google Scholar 

  46. Gobert M, Treilleux I, Bendriss-Vermare N, Bachelot T, Goddard-Leon S, Arfi V et al (2009) Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69:2000–2009

    Article  CAS  PubMed  Google Scholar 

  47. Cao L, Hu X, Zhang J, Huang G, Zhang Y (2014) The role of the CCL22-CCR4 axis in the metastasis of gastric cancer cells into omental milky spots. J Transl Med 12:267. doi:10.1186/s12967-014-0267-1.:267-0267

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martinenaite E, Ahmad SM, Hansen M, Met O, Westergaard MW, Larsen SK, et al. (2016) CCL22-specific T cells: modulating the immunosuppressive tumor microenvironment. In Press ed.

  49. Munir S, Frosig TM, Hansen M, Svane IM, Andersen MH (2012) Characterization of T-cell responses against IkappaBalpha in cancer patients. Oncoimmunology 1:1290–1296

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yu W, Jiang N, Ebert PJ, Kidd BA, Muller S, Lund PJ et al (2015) Clonal deletion prunes but does not eliminate self-specific alphabeta CD8(+) T lymphocytes. Immunity 42:929–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Furset G, Floisand Y, Sioud M (2008) Impaired expression of indoleamine 2, 3-dioxygenase in monocyte-derived dendritic cells in response to Toll-like receptor-7/8 ligands. Immunology 123:263–271

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim ST, Levine AM (2005) Non-AIDS-defining cancers and HIV infection. Curr Infect Dis Rep 7:227–234

    Article  PubMed  Google Scholar 

  54. Hjortso MC, Larsen SK, Kongsted P, Met O, Frosig TM, Andersen GH et al (2015) Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer. Oncoimmunology 4:e968480

    Article  PubMed  PubMed Central  Google Scholar 

  55. Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196:459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu H, Oriss TB, Fei M, Henry AC, Melgert BN, Chen L et al (2008) Indoleamine 2,3-dioxygenase in lung dendritic cells promotes Th2 responses and allergic inflammation. Proc Natl Acad Sci U S A 105:6690–6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iversen TZ, Engell-Noerregaard L, Ellebaek E, Andersen R, Larsen SK, Bjoern J et al (2014) Long-lasting disease stabilization in the absence of toxicity in metastatic lung cancer patients vaccinated with an epitope derived from indoleamine 2,3 dioxygenase. Clin Cancer Res 20:221–232

    Article  CAS  PubMed  Google Scholar 

  58. Ahmad SM, Larsen SK, Svane IM, Andersen MH (2014) Harnessing PD-L1-specific cytotoxic T cells for anti-leukemia immunotherapy to defeat mechanisms of immune escape mediated by the PD-1 pathway. Leukemia 28:236–238

    Article  CAS  PubMed  Google Scholar 

  59. Ahmad SM, Svane IM, Andersen MH (2014) The stimulation of PD-L1-specific cytotoxic T lymphocytes can both directly and indirectly enhance antileukemic immunity. Blood Cancer J 4:230–233

    Article  Google Scholar 

  60. Ahmad SM, Martinenaite E, Hansen M, Junker N, Borch TH, Met O, et al. (2016) PD-L1 peptide co-stimulation increases immunogenicity of a dendritic cell-based cancer vaccine. In press ed.

  61. Munir S, Andersen GH, Svane IM, Andersen MH (2013) The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4+ T cells. Oncoimmunology 2:e23991

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA et al (2008) Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A 105:11903–11908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Andersen MH, Sorensen RB, Brimnes MK, Svane IM, Becker JC, thor Straten P (2009) Identification of heme oxygenase-1-specific regulatory CD8+ T cells in cancer patients. J Clin Invest 119:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Samy ET, Parker LA, Sharp CP, Tung KS (2005) Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional lymph node. J Exp Med 202:771–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nagata Y, Hanagiri T, Mizukami M, Kuroda K, Shigematsu Y, Baba T et al (2009) Clinical significance of HLA class I alleles on postoperative prognosis of lung cancer patients in Japan. Lung Cancer 65:91–97

    Article  PubMed  Google Scholar 

  66. Andersen MH (2013) FOXP3-specific immunity. Oncoimmunology 2:e26247

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Danish Cancer Society, the Danish Council for Independent Research, Toyota Foundation, and Herlev Hospital. The funders did not have a role in the writing of the article or the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mads Hald Andersen.

Ethics declarations

Conflict of interest

MHA is an author of different patent applications based on the use of CCL22, PD-L1, TDO, or IDO for vaccination. The rights of the patent applications have been transferred to Copenhagen University Hospital, Herlev, according to the Danish Law of Public Inventions at Public Research Institutions. MHA is a shareholder and board member of the company IO Biotech ApS that has the purpose of developing commercial IDO and PD-L1 vaccines for cancer treatment.

Additional information

This article is a contribution to the special issue on Cancer and Autoimmunity - Guest Editor: Mads Hald Andersen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersen, M.H. Anti-regulatory T cells. Semin Immunopathol 39, 317–326 (2017). https://doi.org/10.1007/s00281-016-0593-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0593-x

Keywords

Navigation