Skip to main content
Log in

Regulation of allergic inflammation by the ectoenzyme E-NPP3 (CD203c) on basophils and mast cells

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Adenosine 5′-triphosphate (ATP) is released from dying or damaged cells, as well as from activated cells. Once secreted, extracellular ATP induces several immune responses via P2X and P2Y receptors. Basophils and mast cells release ATP upon FcεRI-crosslinking, and ATP activates basophils and mast cells in an autocrine manner. Nucleotide-converting ectoenzymes, such as E-NTPD1, E-NTPD7, and E-NPP3, inhibit ATP-dependent immune responses by hydrolyzing ATP, thereby contributing to immune response regulation. E-NPP3 is a well-known activation marker for human basophils. E-NPP3’s physiologic function has recently been disclosed in mice. E-NPP3 is rapidly induced on basophils and mast cells after FcεRI-crosslinking and hydrolyzes extracellular ATP on cell surfaces to prevent ATP-dependent excess activation of basophils and mast cells. In the absence of E-NPP3, basophils and mast cells are overactivated and mice suffer from severe chronic allergic inflammation. Thus, the ATP-hydrolyzing ectoenzymes E-NPP3 has a nonnegligible role in the regulation of basophil- and mast cell-mediated allergic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Novak I (2003) ATP as a signaling molecule: the exocrine focus. News Physiol Sci 18:12–17. doi:10.1152/nips.01409.2002

    CAS  PubMed  Google Scholar 

  2. Gorini S, Gatta L, Pontecorvo L, Vitiello L, la Sala A (2013) Regulation of innate immunity by extracellular nucleotides. Am J Blood Res 3(1):14–28

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gordon JL (1986) Extracellular ATP: effects, sources and fate. Biochem J 233(2):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakanishi M, Furuno T (2008) Molecular basis of neuroimmune interaction in an in vitro coculture approach. Cell Mol Immunol 5(4):249–259. doi:10.1038/cmi.2008.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bulanova E, Bulfone-Paus S (2010) P2 receptor-mediated signaling in mast cell biology. Purinergic Signal 6(1):3–17. doi:10.1007/s11302-009-9173-z

    Article  CAS  PubMed  Google Scholar 

  6. Schenk U, Westendorf AM, Radaelli E, Casati A, Ferro M, Fumagalli M, Verderio C, Buer J, Scanziani E, Grassi F (2008) Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal 1(39):85–97

    Article  Google Scholar 

  7. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795. doi:10.1126/science.1132559

    Article  CAS  PubMed  Google Scholar 

  8. Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, Schön P, Schwab A, Hanley P (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3(132):ra55

    Article  PubMed  Google Scholar 

  9. Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts MF (2006) The platelet ATP and ADP receptors. Curr Pharm Des 12(7):859–875

    Article  CAS  PubMed  Google Scholar 

  10. Locovei A, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci U S A 103(20):7655–7659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cotrina ML, Lin JHC, Alves-Rodrigues A, Liu S, Li J, Azmi-Ghadimi H, Kang J, Naus CCG, Nedergaard M (1998) Connexins regulate calcium signaling by controlling ATP release. Proc Natl Acad Sci U S A 95(26):15735–15740. doi:10.1073/pnas.95.26.15735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Darby M, Kuzmiski JB, Panenka W, Feighan D, MacVicar BA (2003) ATP released from Astrocytes during swelling activates chloride channels. J Neurophysiol 89(4):1870–1877. doi:10.1152/jn.00510.2002

    Article  CAS  PubMed  Google Scholar 

  13. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran K (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Di Virgilio F (2003) Purinergic mechanism in the immune system: a signal of danger for dendritic cells. Purinergic Signal 1(3):205–209

    Article  Google Scholar 

  15. Junger W (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11(3):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64(12):1471–1483

    Article  CAS  PubMed  Google Scholar 

  17. Kügelgen I (2008) Pharmacology of mammalian P2X-and P2Y-receptors. Biotrend Rev 3(9):1–11

    Google Scholar 

  18. North R (2002) Molecular physiology of P2X receptors. Physiol Rev 82(4):1013–1067

    Article  CAS  PubMed  Google Scholar 

  19. Van Kolen K, Slegers H (2006) Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signaling networks. Purinergic Signal 2(3):451–469

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, Ricordi C, Westendorf AM, Grassi F (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4(162):ra12. doi:10.1126/scisignal.2001270

    Article  PubMed  Google Scholar 

  21. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC Jr, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13(8):913–919. doi:10.1038/nm1617

    Article  CAS  PubMed  Google Scholar 

  22. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034. doi:10.1038/ncomms2023

    Article  PubMed  PubMed Central  Google Scholar 

  23. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509(7500):310–317. doi:10.1038/nature13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through G(i/o)-coupled P2Y receptors. J Neurosci 21(6):1975–1982

    CAS  PubMed  Google Scholar 

  25. Inoue K (2008) Purinergic systems in microglia. Cell Mol Life Sci 65(19):3074–3080. doi:10.1007/s00018-008-8210-3

    Article  CAS  PubMed  Google Scholar 

  26. Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Robaye B (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol 166(12):7172–7177

    Article  CAS  PubMed  Google Scholar 

  27. la Sala A, Ferrari D, Corinti S, Cavani A, Di Virgilio F, Girolomoni G (2001) Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses. J Immunol 166(3):1611–1617

    Article  PubMed  Google Scholar 

  28. Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F (1997) Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159(3):1451–1458

    CAS  PubMed  Google Scholar 

  29. Ferrari D, La Sala A, Chiozzi P, Morelli A, Falzoni S, Girolomoni G, Idzko M, Dichmann S, Norgauer J, Di Virgilio F (2000) The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J Off Publ Fed Am Soc Exp Biol 14(15):2466–2476. doi:10.1096/fj.00-0031com

    CAS  Google Scholar 

  30. Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276(1):125–132. doi:10.1074/jbc.M006781200

    Article  CAS  PubMed  Google Scholar 

  31. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455(7214):808–U810. doi:10.1038/nature07240

    Article  CAS  PubMed  Google Scholar 

  32. Canaday DH, Beigi R, Silver RF, Harding CV, Boom WH, Dubyak GR (2002) ATP and control of intracellular growth of mycobacteria by T cells. Infect Immun 70(11):6456–6459. doi:10.1128/Iai.70.11.6456-6459.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trautmann A (2009) Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2(56):pe6. doi:10.1126/scisignal.256pe6

    Article  PubMed  Google Scholar 

  34. Padeh S, Cohen A, Roifman CM (1991) ATP-induced activation of human B lymphocytes via P2-purinoceptors. J Immunol 146(5):1626–1632

    CAS  PubMed  Google Scholar 

  35. Sakowicz-Burkiewicz M, Kocbuch K, Grden M, Szutowicz A, Pawelczyk T (2010) Adenosine 5'-triphosphate is the predominant source of peripheral adenosine in human B lymphoblast. J Physiol Pharmacol 61(4):491–499

    CAS  PubMed  Google Scholar 

  36. Gorini S, Callegari G, Romagnoli G, Mammi C, Mavilio D, Rosano G, Fini M, Di Virgilio F, Gulinelli S, Falzoni S, Cavani A, Ferrari D, la Sala A (2010) ATP secreted by endothelial cells blocks CX3CL1-elicited natural killer cell chemotaxis and cytotoxicity via P2Y11 receptor activation. Blood 116(22):4492–4500

    Article  CAS  PubMed  Google Scholar 

  37. Abraham SN, St John AL (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10(6):440–452. doi:10.1038/nri2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karasuyama H, Mukai K, Obata K, Tsujimura Y, Wada T (2011) Nonredundant roles of basophils in immunity. Annu Rev Immunol 29:45–69. doi:10.1146/annurev-immunol-031210-101257

    Article  CAS  PubMed  Google Scholar 

  39. Voehringer D (2013) Protective and pathological roles of mast cells and basophils. Nat Rev Immunol 13(5):362–375. doi:10.1038/nri3427

    Article  CAS  PubMed  Google Scholar 

  40. Mukai K, Matsuoka K, Taya C, Suzuki H, Yokozeki H, Nishioka K, Hirokawa K, Etori M, Yamashita M, Kubota T, Minegishi Y, Yonekawa H, Karasuyama H (2005) Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity 23(2):191–202. doi:10.1016/j.immuni.2005.06.011

    Article  CAS  PubMed  Google Scholar 

  41. Obata K, Mukai K, Tsujimura Y, Ishiwata K, Kawano Y, Minegishi Y, Watanabe N, Karasuyama H (2007) Basophils are essential initiators of a novel type of chronic allergic inflammation. Blood 110(3):913–920. doi:10.1182/blood-2007-01-068718

    Article  CAS  PubMed  Google Scholar 

  42. Brandt EB, Strait RT, Hershko D, Wang Q, Muntel EE, Scribner TA, Zimmermann N, Finkelman FD, Rothenberg ME (2003) Mast cells are required for experimental oral allergen-induced diarrhea. J Clin Invest 112(11):1666–1677. doi:10.1172/JCI19785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wesing LA, Câmara NOS, Pereira F (2014) Relationship between mast cells and autoimmune diseases. Austin J Clin Immunol 1(4):1016

    Google Scholar 

  44. Wang L, Sikora J, Hu L, Shen X, Grygorczyk R, Schwarz W (2013) ATP release from mast cells by physical stimulation: a putative early step in activation of acupuncture points. Evid Based Complement Alternat Med : eCAM 2013:350949. doi:10.1155/2013/350949

    PubMed  PubMed Central  Google Scholar 

  45. Dahlquist R, Diamant B (1974) Interaction of ATP and calcium on the rat mast cell: effect on histamine release. Acta Pharmacol Toxicol 34(5):368–384

    Article  CAS  Google Scholar 

  46. Tatham PER, Lindau M (1990) ATP-induced pore formation in the plasma membrane of rat peritoneal mast cells. J Gen Physiol 95(3):459–476

    Article  CAS  PubMed  Google Scholar 

  47. Qian YX, McCloskey M (1993) Activation of mast cells K+ channels through multiple G protein-linked receptors. Proc Natl Acad Sci U S A 90(16):7844–7848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sudo N, Tanaka K, Koga Y, Okumura Y, Kubo C, Nomoto K (1996) Extracellular ATP activates mast cells via a mechanism that is different from the activation induced by the cross-linking of Fc receptors. J Immunol 156(10):3970–3979

    CAS  PubMed  Google Scholar 

  49. Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359(6392):241–244. doi:10.1038/359241a0

    Article  CAS  PubMed  Google Scholar 

  50. Schulman ES, Glaum MC, Post T, Wang Y, Raible DG, Mohanty J, Butterfield JH, Pelleg A (1999) ATP modulates anti-IgE-induced release of histamine from human lung mast cells. Am J Respir Cell Mol Biol 20(3):530–537. doi:10.1165/ajrcmb.20.3.3387

    Article  CAS  PubMed  Google Scholar 

  51. Sugiyama K (1971) Calcium-dependent histamine release with degranulation from isolated rat mast cells by adenosine 5'-triphosphate. Jpn J Pharmacol 21(2):209–226

    Article  CAS  PubMed  Google Scholar 

  52. Cockcroft S, Gomperts BD (1979) Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol 296:229–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jaffar ZH, Pearce F (1993) Some characteristics of the ATP-induced histamine release from and permeabilization of rat mast cells. Agents Actions 40(1-2):18–27

    Article  CAS  PubMed  Google Scholar 

  54. McCloskey M, Fan Y, Luther S (1999) Chemotaxis of rat mast cells towards adenine nucleotides. J Immunol 163(2):970–977

    CAS  PubMed  Google Scholar 

  55. Nakamura Y, Kambe N, Saito M, Nishikomori R, Kim YG, Murakami M, Núñez G, Matsue H (2009) Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine- independent urticaria. J Exp Med 206(5):1037–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura Y, Franchi L, Kambe N, Meng G, Strober W, Núñez G (2012) Critical role for mast cells in interleukin-1b-driven skin inflammation associated with an activating mutation in the Nlrp3 protein. Immunity 37(1):85–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yegutkin G (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694

    Article  CAS  PubMed  Google Scholar 

  58. Schetinger MR, Morsch VM, Bonan CD, Wyse AT (2007) NTPDase and 5'-nucleotidase activities in physiological and disease conditions: new perspectives for human health. Biofactors 31(2):77–98

    Article  CAS  PubMed  Google Scholar 

  59. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Antonioli L, Pacher P, Vizi ES, Haskó G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19(6):355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Samonis G, Kontoyiannis DP (2001) Infectious complications of purine analog therapy. Curr Opin Infect Dis 14(4):409–413

    Article  CAS  PubMed  Google Scholar 

  62. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rotzschke O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110(4):1225–1232. doi:10.1182/blood-2006-12-064527

    Article  CAS  PubMed  Google Scholar 

  63. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257–1265. doi:10.1084/jem.20062512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bono MR, Fernandez D, Flores-Santibanez F, Rosemblatt M, Sauma D (2015) CD73 and CD39 ectonucleotidases in T cell differentiation: beyond immunosuppression. FEBS Lett 589(22):3454–3460. doi:10.1016/j.febslet.2015.07.027

    Article  CAS  PubMed  Google Scholar 

  65. Schena F, Volpi S, Faliti CE, Penco F, Santi S, Proietti M, Schenk U, Damonte G, Salis A, Bellotti M, Fais F, Tenca C, Gattorno M, Eibel H, Rizzi M, Warnatz K, Idzko M, Ayata CK, Rakhmanov M, Galli T, Martini A, Canossa M, Grassi F, Traggiai E (2013) Dependence of immunoglobulin class switch recombination in B cells on vesicular release of ATP and CD73 ectonucleotidase activity. Cell Rep 3(6):1824–1831. doi:10.1016/j.celrep.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  66. Linden J (2006) Cell biology. Purinergic chemotaxis. Science 314(5806):1689–1690

    Article  CAS  PubMed  Google Scholar 

  67. Corriden R, Chen Y, Inoue Y, Beldi G, Robson SC, Insel PA, Junger WG (2008) Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem 283(42):28480–28486. doi:10.1074/jbc.M800039200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Levesque SA, Kukulski F, Enjyoji K, Robson SC, Sevigny J (2010) NTPDase1 governs P2X7-dependent functions in murine macrophages. Eur J Immunol 40(5):1473–1485. doi:10.1002/eji.200939741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hasko G, Csoka B, Koscso B, Chandra R, Pacher P, Thompson LF, Deitch EA, Spolarics Z, Virag L, Gergely P, Rolandelli RH, Nemeth ZH (2011) Ecto-5'-nucleotidase (CD73) decreases mortality and organ injury in sepsis. J Immunol 187(8):4256–4267. doi:10.4049/jimmunol.1003379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C, Tubridy N, Mills KHG (2009) CD39(+)Foxp3(+) regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol 183(11):7602–7610. doi:10.4049/jimmunol.0901881

    Article  CAS  PubMed  Google Scholar 

  71. Friedman DJ, Kunzli BM, A-Rahim YI, Sevigny J, Berberat PO, Enjyoji K, Csizmadia E, Friess H, Robson SC (2009) From the Cover: CD39 deletion exacerbates experimental murine colitis and human polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl Acad Sci U S A 106(39):16788–16793. doi:10.1073/pnas.0902869106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ring S, Oliver SJ, Cronstein BN, Enk AH, Mahnke K (2009) CD4+CD25+ regulatory T cells suppress contact hypersensitivity reactions through a CD39, adenosine-dependent mechanism. J Allergy Clin Immunol 123(6):1287–1296

    Article  CAS  PubMed  Google Scholar 

  73. Kusu T, Kayama H, Kinoshita M, Jeon SG, Ueda Y, Goto Y, Okumura R, Saiga H, Kurakawa T, Ikeda K, Maeda Y, Nishimura J, Arima Y, Atarashi K, Honda K, Murakami M, Kunisawa J, Kiyono H, Okumura M, Yamamoto M, Takeda K (2013) Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J Immunol 190(2):774–783

    Article  CAS  PubMed  Google Scholar 

  74. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. BiochimBiophysActa (BBA)-Mol Basis Dis 1638(1):1–19. doi:10.1016/S0925-4439(03)00058-9

    Article  CAS  Google Scholar 

  75. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 30(10):542–550. doi:10.1016/j.tibs.2005.08.005

    Article  CAS  PubMed  Google Scholar 

  76. Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2(2):361–370. doi:10.1007/s11302-005-5303-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19(3):271–273. doi:10.1038/956

    Article  CAS  PubMed  Google Scholar 

  78. Terkeltaub R (2001) Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol 281(1):C1–C11

    CAS  PubMed  Google Scholar 

  79. van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradère JP, Pettit TR, Wakelam MJ, Saulnier-Blache JS, Mummery CL, Moolenaar WH, Jonkers J (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26(13):5015–5022

    Article  PubMed  PubMed Central  Google Scholar 

  80. Moolenaar W (2002) Lysophospholipids in the limelight: autotaxin takes center stage. J Cell Biol 158(2):197–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Korekane H, Park JY, Matsumoto A, Nakajima K, Takamatsu S, Ohtsubo K, Miyamoto Y, Hanashima S, Kanekiyo K, Kitazume S, Yamaguchi Y, Matsuo I, Taniguchi N (2013) Identification of ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3) as a regulator of N-acetylglucosaminyltransferase GnT-IX (GnT-Vb). J Biol Chem 288(39):27912–27926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bühring HJ, Seiffert M, Giesert C, Marxer A, Kanz L, Valent P, Sano K (2001) The basophil activation marker defined by antibody 97A6 is identical to the ectonucleotide pyrophosphatase/phosphodiesterase 3. Blood 97(10):3303–3305

    Article  PubMed  Google Scholar 

  83. Hauswirth AW, Natter S, Ghannadan M, Majlesi Y, Schernthaner GH, Sperr WR, Buhring HJ, Valenta R, Valent P (2002) Recombinant allergens promote expression of CD203c on basophils in sensitized individuals. J Allergy Clin Immunol 110(1):102–109

    Article  CAS  PubMed  Google Scholar 

  84. Fujisawa T, Nagao M, Hiraguchi Y, Hosoki K, Tokuda R, Usui S, Masuda S, Shinoda M, Hashiguchi A, Yamaguchi M (2009) Biomarkers for allergen immunotherapy in cedar pollinosis. Allergol Int 58(2):163–170. doi:10.2332/allergolint.09-RAI-0097

    Article  CAS  PubMed  Google Scholar 

  85. Bridts CH, Sabato V, Mertens C, Hagendorens MM, De Clerck LS, Ebo DG (2014) Flow cytometric allergy diagnosis: basophil activation techniques. Methods Mol Biol 1192:147–159. doi:10.1007/978-1-4939-1173-8_11

    Article  CAS  PubMed  Google Scholar 

  86. Bühring HJ, Streble A, Valent P (2004) The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. Int Arch Allergy Immunol 133(4):317–329

    Article  PubMed  Google Scholar 

  87. Ono E, Taniguchi M, Higashi N, Mita H, Kajiwara K, Yamaguchi H, Tatsuno S, Fukutomi Y, Tanimoto H, Sekiya K, Oshikata C, Tsuburai T, Tsurikisawa N, Otomo M, Maeda Y, Hasegawa M, Miyazaki E, Kumamoto T, Akiyama K (2010) CD203c expression on human basophils is associated with asthma exacerbation. J Allergy Clin Immunol 125(2):483–489

    Article  CAS  PubMed  Google Scholar 

  88. Imoto Y, Takabayashi T, Sakashita M, Tokunaga T, Ninomiya T, Ito Y, Narita N, Yamada T, Fujieda S (2015) Peripheral basophil reactivity, CD203c expression by Cryj1 stimulation, is useful for diagnosing seasonal allergic rhinitis by Japanese cedar pollen. Immunol Inflamm Dis 3(3):300–308

    Article  CAS  Google Scholar 

  89. Tsai SH, Kinoshita M, Kusu T, Kayama H, Okumura R, Ikeda K, Shimada Y, Takeda A, Yoshikawa S, Obata-Ninomiya K, Kurashima Y, Sato S, Umemoto E, Kiyono H, Karasuyama H, Takeda K (2015) The ectoenzyme E-NPP3 negatively regulates ATP-dependent chronic allergic responses by basophils and mast cells. Immunity 42(2):279–293. doi:10.1016/j.immuni.2015.01.015

    Article  CAS  PubMed  Google Scholar 

  90. Kim HY, DeKruyff RH, Umetsu DT (2010) The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11(7):577–584. doi:10.1038/ni.1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Galli SJ, Tsai M (2012) IgE and mast cells in allergic disease. Nat Med 18(5):693–704. doi:10.1038/nm.2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wakahara K, Van VQ, Baba N, Begin P, Rubio M, Delespesse G, Sarfati M (2013) Basophils are recruited to inflamed lungs and exacerbate memory Th2 responses in mice and humans. Allergy 68(2):180–189. doi:10.1111/all.12072

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank C. Hidaka for secretarial assistance. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan Agency for Medical Research and Development, and the Ministry of Health, Labour and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Takeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is a contribution to the special issue on Basophils and Mast Cells in Immunity and Inflammation - Guest Editor: Hajime Karasuyama

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, S.H., Takeda, K. Regulation of allergic inflammation by the ectoenzyme E-NPP3 (CD203c) on basophils and mast cells. Semin Immunopathol 38, 571–579 (2016). https://doi.org/10.1007/s00281-016-0564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-016-0564-2

Keywords

Navigation