Skip to main content

Advertisement

Log in

The use of microRNA by human viruses: lessons from NK cells and HCMV infection

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its “multitasking” microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    PubMed  CAS  Google Scholar 

  2. Kiessling R, Klein E, Pross H et al (1975) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5:117–121

    PubMed  CAS  Google Scholar 

  3. Robertson MJ, Caligiuri MA, Manley TJ et al (1990) Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol 145:3194–3201

    PubMed  CAS  Google Scholar 

  4. Sivori S, Vitale M, Morelli L et al (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Caligiuri MA (2008) Human natural killer cells. Blood 112:461–469

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Galy A, Travis M, Cen D et al (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3:459–473

    PubMed  CAS  Google Scholar 

  7. Seaman WE, Gindhart TD, Greenspan JS et al (1979) Natural killer cells, bone, and the bone marrow: studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice. J Immunol 122:2541–2547

    PubMed  CAS  Google Scholar 

  8. Kumar V, Ben-Ezra J, Bennett M et al (1979) Natural killer cells in mice treated with 89strontium: normal target-binding cell numbers but inability to kill even after interferon administration. J Immunol 123:1832–1838

    PubMed  CAS  Google Scholar 

  9. Yu J, Freud AG, Caligiuri MA (2013) Location and cellular stages of natural killer cell development. Trends Immunol 34:573–582

    PubMed  CAS  Google Scholar 

  10. Beziat V, Liu LL, Malmberg JA et al (2013) NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121:2678–2688

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Della Chiesa M, Falco M, Muccio L et al (2013) Impact of HCMV infection on NK cell development and function after HSCT. Front Immunol 4:458

    PubMed  PubMed Central  Google Scholar 

  12. Orange JS (2013) Natural killer cell deficiency. J Allergy Clin Immunol 132:515–525, quiz 526

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Siren J, Sareneva T, Pirhonen J et al (2004) Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 85:2357–2364

    PubMed  CAS  Google Scholar 

  14. Schroder K, Hertzog PJ, Ravasi T et al (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189

    PubMed  CAS  Google Scholar 

  15. Biron CA, Nguyen KB, Pien GC et al (1999) Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17:189–220

    PubMed  CAS  Google Scholar 

  16. Gur C, Porgador A, Elboim M et al (2010) The activating receptor NKp46 is essential for the development of type 1 diabetes. Nat Immunol 11:121–128

    PubMed  CAS  Google Scholar 

  17. Gur C, Enk J, Kassem SA et al (2011) Recognition and killing of human and murine pancreatic beta cells by the NK receptor NKp46. J Immunol 187:3096–3103

    PubMed  CAS  Google Scholar 

  18. Gur C, Enk J, Weitman E et al (2013) The expression of the beta cell-derived autoimmune ligand for the killer receptor nkp46 is attenuated in type 2 diabetes. PLoS One 8:e74033

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Deniz G, van de Veen W, Akdis M (2013) Natural killer cells in patients with allergic diseases. J Allergy Clin Immunol 132:527–535

    PubMed  CAS  Google Scholar 

  20. Ghadially H, Horani A, Glasner A et al (2013) NKp46 regulates allergic responses. Eur J Immunol 43:3006–3016

    PubMed  CAS  Google Scholar 

  21. Hsieh CL, Obara H, Ogura Y et al (2002) NK cells and transplantation. Transpl Immunol 9:111–114

    PubMed  CAS  Google Scholar 

  22. Kroemer A, Edtinger K, Li XC (2008) The innate natural killer cells in transplant rejection and tolerance induction. Curr Opin Organ Transplant 13:339–343

    PubMed  Google Scholar 

  23. Uharek L, Glass B, Gaska T et al (1993) Natural killer cells as effector cells of graft-versus-leukemia activity in a murine transplantation model. Bone Marrow Transplant 12(Suppl 3):S57–S60

    PubMed  Google Scholar 

  24. Hanna J, Goldman-Wohl D, Hamani Y et al (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12:1065–1074

    PubMed  CAS  Google Scholar 

  25. Manaster I, Mizrahi S, Goldman-Wohl D et al (2008) Endometrial NK cells are special immature cells that await pregnancy. J Immunol 181:1869–1876

    PubMed  CAS  Google Scholar 

  26. Topham NJ, Hewitt EW (2009) Natural killer cell cytotoxicity: how do they pull the trigger? Immunology 128:7–15

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Orange JS, Ramesh N, Remold-O’Donnell E et al (2002) Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci U S A 99:11351–11356

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Oshimi Y, Oda S, Honda Y et al (1996) Involvement of Fas ligand and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J Immunol 157:2909–2915

    PubMed  CAS  Google Scholar 

  29. Zamai L, Ahmad M, Bennett IM et al (1998) Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188:2375–2380

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Spaggiari GM, Carosio R, Pende D et al (2001) NK cell-mediated lysis of autologous antigen-presenting cells is triggered by the engagement of the phosphatidylinositol 3-kinase upon ligation of the natural cytotoxicity receptors NKp30 and NKp46. Eur J Immunol 31:1656–1665

    PubMed  CAS  Google Scholar 

  31. Zitvogel L, Terme M, Borg C et al (2006) Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr Top Microbiol Immunol 298:157–174

    PubMed  CAS  Google Scholar 

  32. Crome SQ, Lang PA, Lang KS et al (2013) Natural killer cells regulate diverse T cell responses. Trends Immunol 34:342–349

    PubMed  CAS  Google Scholar 

  33. Zingoni A, Ardolino M, Santoni A et al (2012) NKG2D and DNAM-1 activating receptors and their ligands in NK-T cell interactions: role in the NK cell-mediated negative regulation of T cell responses. Front Immunol 3:408

    PubMed  PubMed Central  Google Scholar 

  34. Moretta L, Bottino C, Pende D et al (2002) Human natural killer cells: their origin, receptors and function. Eur J Immunol 32:1205–1211

    PubMed  CAS  Google Scholar 

  35. Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251

    PubMed  CAS  Google Scholar 

  36. Middleton D, Curran M, Maxwell L (2002) Natural killer cells and their receptors. Transpl Immunol 10:147–164

    PubMed  CAS  Google Scholar 

  37. Rajagopalan S, Long EO (2012) KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol 3:258

    PubMed  PubMed Central  Google Scholar 

  38. Vitale M, Castriconi R, Parolini S et al (1999) The leukocyte Ig-like receptor (LIR)-1 for the cytomegalovirus UL18 protein displays a broad specificity for different HLA class I alleles: analysis of LIR-1 + NK cell clones. Int Immunol 11:29–35

    PubMed  CAS  Google Scholar 

  39. O’Callaghan CA (2000) Molecular basis of human natural killer cell recognition of HLA-E (human leucocyte antigen-E) and its relevance to clearance of pathogen-infected and tumour cells. Clin Sci (Lond) 99:9–17

    Google Scholar 

  40. Braud VM, Allan DS, Wilson D et al (1998) TAP- and tapasin-dependent HLA-E surface expression correlates with the binding of an MHC class I leader peptide. Curr Biol 8:1–10

    PubMed  CAS  Google Scholar 

  41. O’Callaghan CA, Bell JI (1998) Structure and function of the human MHC class Ib molecules HLA-E, HLA-F and HLA-G. Immunol Rev 163:129–138

    PubMed  Google Scholar 

  42. Carretero M, Cantoni C, Bellon T et al (1997) The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules. Eur J Immunol 27:563–567

    PubMed  CAS  Google Scholar 

  43. Lazetic S, Chang C, Houchins JP et al (1996) Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J Immunol 157:4741–4745

    PubMed  CAS  Google Scholar 

  44. Stanietsky N, Simic H, Arapovic J et al (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A 106:17858–17863

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Lankry D, Rovis TL, Jonjic S et al (2013) The interaction between CD300a and phosphatidylserine inhibits tumor cell killing by NK cells. Eur J Immunol 43:2151–2161

    PubMed  CAS  Google Scholar 

  46. Markel G, Wolf D, Hanna J et al (2002) Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. J Clin Invest 110:943–953

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Pende D, Parolini S, Pessino A et al (1999) Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med 190:1505–1516

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Vitale M, Bottino C, Sivori S et al (1998) NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med 187:2065–2072

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Porgador A (2005) Natural cytotoxicity receptors: pattern recognition and involvement of carbohydrates. Sci World J 5:151–154

    CAS  Google Scholar 

  50. Bottino C, Moretta L, Pende D et al (2004) Learning how to discriminate between friends and enemies, a lesson from Natural Killer cells. Mol Immunol 41:569–575

    PubMed  CAS  Google Scholar 

  51. Carrega P, Pezzino G, Queirolo P et al (2009) Susceptibility of human melanoma cells to autologous natural killer (NK) cell killing: HLA-related effector mechanisms and role of unlicensed NK cells. PLoS One 4:e8132

    PubMed  PubMed Central  Google Scholar 

  52. Halfteck GG, Elboim M, Gur C et al (2009) Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J Immunol 182:2221–2230

    PubMed  CAS  Google Scholar 

  53. Baychelier F, Sennepin A, Ermonval M et al (2013) Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 122:2935–2942

    PubMed  CAS  Google Scholar 

  54. Pogge von Strandmann E, Simhadri VR, von Tresckow B et al (2007) Human leukocyte antigen-B-associated transcript 3 is released from tumor cells and engages the NKp30 receptor on natural killer cells. Immunity 27:965–974

    PubMed  CAS  Google Scholar 

  55. Brandt CS, Baratin M, Yi EC et al (2009) The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J Exp Med 206:1495–1503

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Rosental B, Brusilovsky M, Hadad U et al (2011) Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J Immunol 187:5693–5702

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Ferlazzo G, Tsang ML, Moretta L et al (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343–351

    PubMed  CAS  PubMed Central  Google Scholar 

  58. Seidel E, Glasner A, Mandelboim O (2012) Virus-mediated inhibition of natural cytotoxicity receptor recognition. Cell Mol Life Sci 69:3911–3920

  59. Jarahian M, Fiedler M, Cohnen A et al (2011) Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 7:e1002195

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Arnon TI, Achdout H, Levi O et al (2005) Inhibition of the NKp30 activating receptor by pp 65 of human cytomegalovirus. Nat Immunol 6:515–523

    PubMed  CAS  Google Scholar 

  61. Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    PubMed  CAS  Google Scholar 

  62. Houchins JP, Yabe T, McSherry C et al (1991) DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173:1017–1020

    PubMed  CAS  Google Scholar 

  63. Wu J, Song Y, Bakker AB et al (1999) An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–732

    PubMed  CAS  Google Scholar 

  64. Karimi M, Cao TM, Baker JA et al (2005) Silencing human NKG2D, DAP10, and DAP12 reduces cytotoxicity of activated CD8+ T cells and NK cells. J Immunol 175:7819–7828

    PubMed  CAS  Google Scholar 

  65. Raulet DH, Gasser S, Gowen BG et al (2013) Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31:413–441

    PubMed  CAS  Google Scholar 

  66. Groh V, Rhinehart R, Secrist H et al (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci U S A 96:6879–6884

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Lakshmikanth T, Burke S, Ali TH et al (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119:1251–1263

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Lanier LL (1998) NK cell receptors. Annu Rev Immunol 16:359–393

    PubMed  CAS  Google Scholar 

  69. Falco M, Marcenaro E, Romeo E et al (2004) Homophilic interaction of NTBA, a member of the CD2 molecular family: induction of cytotoxicity and cytokine release in human NK cells. Eur J Immunol 34:1663–1672

    PubMed  CAS  Google Scholar 

  70. Vitale M, Falco M, Castriconi R et al (2001) Identification of NKp80, a novel triggering molecule expressed by human NK cells. Eur J Immunol 31:233–242

    PubMed  CAS  Google Scholar 

  71. Mathew SO, Rao KK, Kim JR et al (2009) Functional role of human NK cell receptor 2B4 (CD244) isoforms. Eur J Immunol 39:1632–1641

    PubMed  CAS  Google Scholar 

  72. Fuchs A, Cella M, Giurisato E et al (2004) Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J Immunol 172:3994–3998

    PubMed  CAS  Google Scholar 

  73. Orange JS (2002) Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4:1545–1558

    PubMed  CAS  Google Scholar 

  74. Martin MP, Gao X, Lee JH et al (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 31:429–434

    PubMed  CAS  Google Scholar 

  75. Martin MP, Qi Y, Gao X et al (2007) Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat Genet 39:733–740

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Collins KL, Chen BK, Kalams SA et al (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401

    PubMed  CAS  Google Scholar 

  77. Cohen GB, Gandhi RT, Davis DM et al (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–671

    PubMed  CAS  Google Scholar 

  78. Kiepiela P, Leslie AJ, Honeyborne I et al (2004) Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 432:769–775

    PubMed  CAS  Google Scholar 

  79. Arnon TI, Lev M, Katz G et al (2001) Recognition of viral hemagglutinins by NKp44 but not by NKp30. Eur J Immunol 31:2680–2689

    PubMed  CAS  Google Scholar 

  80. Mandelboim O, Lieberman N, Lev M et al (2001) Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409:1055–1060

    PubMed  CAS  Google Scholar 

  81. Gazit R, Gruda R, Elboim M et al (2006) Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523

    PubMed  CAS  Google Scholar 

  82. Glasner A, Zurunic A, Meningher T et al (2012) Elucidating the mechanisms of influenza virus recognition by Ncr1. PLoS One 7:e36837

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Moscona A (2005) Neuraminidase Inhibitors for Influenza. N Engl J Med 353:1363–1373

    PubMed  CAS  Google Scholar 

  84. Tamura D, Sugaya N, Ozawa M et al (2011) Frequency of drug-resistant viruses and virus shedding in pediatric influenza patients treated with neuraminidase inhibitors. Clin Infect Dis 52:432–437

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Bar-On Y, Glasner A, Meningher T et al (2013) Neuraminidase-mediated, NKp46-dependent immune-evasion mechanism of influenza viruses. Cell Rep 3:1044–1050

    PubMed  CAS  Google Scholar 

  86. Bar-On Y, Seidel E, Tsukerman P et al (2014) Influenza virus uses its neuraminidase protein to evade the recognition of two activating NK cell receptors. J Infect Dis. doi:10.1093/infdis/jiu094

  87. Ebell MH (2004) Epstein-Barr virus infectious mononucleosis. Am Fam Physician 70:1279–1287

    PubMed  Google Scholar 

  88. Kutok JL, Wang F (2006) Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol 1:375–404

    PubMed  CAS  Google Scholar 

  89. Parolini S, Bottino C, Falco M et al (2000) X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med 192:337–346

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Shaw RK, Issekutz AC, Fraser R et al (2012) Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency. Blood 119:4009–4012

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Nachmani D, Stern-Ginossar N, Sarid R et al (2009) Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 5:376–385

    PubMed  CAS  Google Scholar 

  92. Griffin BD, Gram AM, Mulder A et al (2013) EBV BILF1 evolved to downregulate cell surface display of a wide range of HLA class I molecules through their cytoplasmic tail. J Immunol 190:1672–1684

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  94. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101

    PubMed  CAS  Google Scholar 

  95. Lee Y, Kim M, Han J et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    PubMed  CAS  Google Scholar 

  97. Havens MA, Reich AA, Duelli DM et al (2012) Biogenesis of mammalian microRNAs by a non-canonical processing pathway. Nucleic Acids Res 40:4626–4640

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Wu Q, Song R, Ortogero N et al (2012) The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 287:25173–25190

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Landthaler M, Yalcin A, Tuschl T (2004) The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14:2162–2167

    PubMed  CAS  Google Scholar 

  100. Gwizdek C, Ossareh-Nazari B, Brownawell AM et al (2004) Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J Biol Chem 279:884–891

    PubMed  CAS  Google Scholar 

  101. Redfern AD, Colley SM, Beveridge DJ et al (2013) RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci U S A 110:6536–6541

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    PubMed  CAS  Google Scholar 

  103. Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429:318–322

    PubMed  CAS  Google Scholar 

  104. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    PubMed  CAS  Google Scholar 

  105. Orom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471

    PubMed  Google Scholar 

  106. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Duursma AM, Kedde M, Schrier M et al (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Stern-Ginossar N, Gur C, Biton M et al (2008) Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat Immunol 9:1065–1073

    PubMed  CAS  Google Scholar 

  109. Davison AJ, Eberle R, Ehlers B et al (2009) The order Herpesvirales. Arch Virol 154:171–177

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Weller TH (1970) Review. Cytomegaloviruses: the difficult years. J Infect Dis 122:532–539

    PubMed  CAS  Google Scholar 

  111. Ho M (2008) The history of cytomegalovirus and its diseases. Med Microbiol Immunol 197:65–73

    PubMed  Google Scholar 

  112. Brooks GF (2013) Herpesviruses. In: Carroll KC (ed) Jawetz, Melnick, and Adelberg’s medical microbiology, McGraw-Hill, New York, p. 26e

  113. Engman ML, Malm G, Engstrom L et al (2008) Congenital CMV infection: prevalence in newborns and the impact on hearing deficit. Scand J Infect Dis 40:935–942

    PubMed  Google Scholar 

  114. Scheurer ME, Bondy ML, Aldape KD et al (2008) Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116:79–86

    PubMed  CAS  PubMed Central  Google Scholar 

  115. Bravender T (2010) Epstein-Barr virus, cytomegalovirus, and infectious mononucleosis. Adolesc Med State Art Rev 21:251–264, ix

    PubMed  Google Scholar 

  116. Mamun Al M, Rahman S, Khan M (2009) Acute cytomegalovirus hepatitis in immunocompetent host. Kathmandu Univ Med J (KUMJ) 7:79–81

    Google Scholar 

  117. Azad AK, Ahmed T, Chowdhury AJ et al (2008) Cytomegalovirus induced hepatitis in an immunocompetent host. Mymensingh Med J 17:S104–S106

    PubMed  CAS  Google Scholar 

  118. Emery VC (2001) Investigation of CMV disease in immunocompromised patients. J Clin Pathol 54:84–88

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Cantoni N, Hirsch HH, Khanna N et al (2010) Evidence for a bidirectional relationship between cytomegalovirus replication and acute graft-versus-host disease. Biol Blood Marrow Transplant 16:1309–1314

    PubMed  Google Scholar 

  120. Weekes MP, Tan SY, Poole E et al (2013) Latency-associated degradation of the MRP1 drug transporter during latent human cytomegalovirus infection. Science 340:199–202

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Compton T, Feire A (2007) Early events in human cytomegalovirus infection. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, Yamanishi K (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  122. Dolan A, Cunningham C, Hector RD et al (2004) Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312

    PubMed  CAS  Google Scholar 

  123. Pignatelli S, Dal Monte P, Rossini G et al (2004) Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev Med Virol 14:383–410

    PubMed  CAS  Google Scholar 

  124. Cha TA, Tom E, Kemble GW et al (1996) Human cytomegalovirus clinical isolates carry at least 19 genes not found in laboratory strains. J Virol 70:78–83

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Kalejta RF (2008) Tegument proteins of human cytomegalovirus. Microbiol Mol Biol Rev 72:249–265, table of contents

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Isaacson MK, Compton T (2009) Human cytomegalovirus glycoprotein B is required for virus entry and cell-to-cell spread but not for virion attachment, assembly, or egress. J Virol 83:3891–3903

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Pietropaolo RL, Compton T (1997) Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J Virol 71:9803–9807

    PubMed  CAS  PubMed Central  Google Scholar 

  128. Pietropaolo R, Compton T (1999) Interference with annexin II has no effect on entry of human cytomegalovirus into fibroblast cells. J Gen Virol 80(Pt 7):1807–1816

    PubMed  CAS  Google Scholar 

  129. Wille PT, Wisner TW, Ryckman B et al (2013) Human cytomegalovirus (HCMV) glycoprotein gB promotes virus entry in trans acting as the viral fusion protein rather than as a receptor-binding protein. MBio 4:e00332–00313

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Ryckman BJ, Jarvis MA, Drummond DD et al (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 80:710–722

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Hahn G, Jores R, Mocarski ES (1998) Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. Proc Natl Acad Sci U S A 95:3937–3942

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Taylor-Wiedeman J, Sissons JG, Borysiewicz LK et al (1991) Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol 72(Pt 9):2059–2064

    PubMed  CAS  Google Scholar 

  133. Reeves MB, MacAry PA, Lehner PJ et al (2005) Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 102:4140–4145

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Sinclair J (2010) Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta 1799:286–295

    PubMed  CAS  Google Scholar 

  135. Davison AJ, Dolan A, Akter P et al (2003) The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28

    PubMed  CAS  Google Scholar 

  136. Murphy E, Rigoutsos I, Shibuya T et al (2003) Reevaluation of human cytomegalovirus coding potential. Proc Natl Acad Sci U S A 100:13585–13590

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Stern-Ginossar N, Weisburd B, Michalski A et al (2012) Decoding human cytomegalovirus. Science 338:1088–1093

    PubMed  CAS  Google Scholar 

  138. Rolle A, Mousavi-Jazi M, Eriksson M et al (2003) Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171:902–908

    PubMed  Google Scholar 

  139. Eagle RA, Traherne JA, Hair JR et al (2009) ULBP6/RAET1L is an additional human NKG2D ligand. Eur J Immunol 39:3207–3216

    PubMed  CAS  Google Scholar 

  140. Wu J, Chalupny NJ, Manley TJ et al (2003) Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J Immunol 170:4196–4200

    PubMed  CAS  Google Scholar 

  141. Ashiru O, Bennett NJ, Boyle LH et al (2009) NKG2D ligand MICA is retained in the cis-Golgi apparatus by human cytomegalovirus protein UL142. J Virol 83:12345–12354

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Fielding CA, Aicheler R, Stanton RJ et al (2014) Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation. PLoS Pathog 10:e1004058

    PubMed  PubMed Central  Google Scholar 

  143. Bennett NJ, Ashiru O, Morgan FJ et al (2010) Intracellular sequestration of the NKG2D ligand ULBP3 by human cytomegalovirus. J Immunol 185:1093–1102

    PubMed  CAS  Google Scholar 

  144. Hewitt EW, Gupta SS, Lehner PJ (2001) The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20:387–396

    PubMed  CAS  PubMed Central  Google Scholar 

  145. van der Wal FJ, Kikkert M, Wiertz E (2002) The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol. Curr Top Microbiol Immunol 269:37–55

    PubMed  Google Scholar 

  146. Noriega VM, Hesse J, Gardner TJ et al (2012) Human cytomegalovirus US3 modulates destruction of MHC class I molecules. Mol Immunol 51:245–253

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Furman MH, Dey N, Tortorella D et al (2002) The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. J Virol 76:11753–11756

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Trgovcich J, Cebulla C, Zimmerman P et al (2006) Human cytomegalovirus protein pp 71 disrupts major histocompatibility complex class I cell surface expression. J Virol 80:951–963

    PubMed  CAS  PubMed Central  Google Scholar 

  149. Chapman TL, Heikeman AP, Bjorkman PJ (1999) The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11:603–613

    PubMed  CAS  Google Scholar 

  150. Pfeffer S, Zavolan M, Grasser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736

    PubMed  CAS  Google Scholar 

  151. Pfeffer S, Sewer A, Lagos-Quintana M et al (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276

    PubMed  CAS  Google Scholar 

  152. Cui C, Griffiths A, Li G et al (2006) Prediction and identification of herpes simplex virus 1-encoded microRNAs. J Virol 80:5499–5508

    PubMed  CAS  PubMed Central  Google Scholar 

  153. Sun L, Li Q (2012) The miRNAs of Herpes Simplex Virus (HSV). Virol Sin 27:332–337

    CAS  Google Scholar 

  154. Grundhoff A, Sullivan CS (2011) Virus-encoded microRNAs. Virology 411:325–343

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Stern-Ginossar N, Elefant N, Zimmermann A et al (2007) Host immune system gene targeting by a viral miRNA. Science 317:376–381

    PubMed  CAS  Google Scholar 

  157. Bauman Y, Nachmani D, Vitenshtein A et al (2011) An identical miRNA of the human JC and BK polyoma viruses targets the stress-induced ligand ULBP3 to escape immune elimination. Cell Host Microbe 9:93–102

    PubMed  CAS  Google Scholar 

  158. Kim S, Lee S, Shin J et al (2011) Human cytomegalovirus microRNA miR-US4-1 inhibits CD8(+) T cell responses by targeting the aminopeptidase ERAP1. Nat Immunol 12:984–991

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Tomasec P, Braud VM, Rickards C et al (2000) Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287:1031

    PubMed  CAS  Google Scholar 

  160. Nachmani D, Zimmermann A, Oiknine Djian E et al (2014) MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog 10:e1003963

    PubMed  PubMed Central  Google Scholar 

  161. Maghazachi AA, al-Aoukaty A, Schall TJ (1994) C-C chemokines induce the chemotaxis of NK and IL-2-activated NK cells. Role for G proteins. J Immunol 153:4969–4977

    PubMed  CAS  Google Scholar 

  162. Loetscher P, Seitz M, Clark-Lewis I et al (1996) Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J Immunol 156:322–327

    PubMed  CAS  Google Scholar 

  163. Taylor RT, Bresnahan WA (2006) Human cytomegalovirus immediate-early 2 protein IE86 blocks virus-induced chemokine expression. J Virol 80:920–928

    PubMed  CAS  PubMed Central  Google Scholar 

  164. Bodaghi B, Jones TR, Zipeto D et al (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866

    PubMed  CAS  PubMed Central  Google Scholar 

  165. Wang D, Bresnahan W, Shenk T (2004) Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci U S A 101:16642–16647

    PubMed  CAS  PubMed Central  Google Scholar 

  166. Kim Y, Lee S, Kim S et al (2012) Human cytomegalovirus clinical strain-specific microRNA miR-UL148D targets the human chemokine RANTES during infection. PLoS Pathog 8:e1002577

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Sarras H, Alizadeh Azami S, McPherson JP (2010) In search of a function for BCLAF1. Sci World J 10:1450–1461

    CAS  Google Scholar 

  168. Lee YY, Yu YB, Gunawardena HP et al (2012) BCLAF1 is a radiation-induced H2AX-interacting partner involved in gammaH2AX-mediated regulation of apoptosis and DNA repair. Cell Death Dis 3:e359

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Lee SH, Kalejta RF, Kerry J et al (2012) BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection. Proc Natl Acad Sci U S A 109:9575–9580

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Ziegelbauer JM, Sullivan CS, Ganem D (2009) Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet 41:130–134

    PubMed  CAS  PubMed Central  Google Scholar 

  171. Park MH, Song MJ, Cho MC et al (2012) Interleukin-32 enhances cytotoxic effect of natural killer cells to cancer cells via activation of death receptor 3. Immunology 135:63–72

    PubMed  CAS  PubMed Central  Google Scholar 

  172. Cheon S, Lee JH, Park S et al (2011) Overexpression of IL-32alpha increases natural killer cell-mediated killing through up-regulation of Fas and UL16-binding protein 2 (ULBP2) expression in human chronic myeloid leukemia cells. J Biol Chem 286:12049–12055

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Huang Y, Qi Y, Ma Y et al (2013) The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. Virol J 10:51

    PubMed  PubMed Central  Google Scholar 

  174. Hook LM, Grey F, Grabski R et al (2014) Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell Host Microbe 15:363–373

    PubMed  CAS  Google Scholar 

  175. Pavelin J, Reynolds N, Chiweshe S et al (2013) Systematic microRNA analysis identifies ATP6V0C as an essential host factor for human cytomegalovirus replication. PLoS Pathog 9:e1003820

    PubMed  PubMed Central  Google Scholar 

  176. Grey F, Tirabassi R, Meyers H et al (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6:e1000967

    PubMed  PubMed Central  Google Scholar 

  177. Qi M, Qi Y, Ma Y et al (2013) Over-expression of human cytomegalovirus miR-US25-2-3p downregulates eIF4A1 and inhibits HCMV replication. FEBS Lett 587:2266–2271

    PubMed  CAS  Google Scholar 

  178. Stern-Ginossar N, Saleh N, Goldberg MD et al (2009) Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 83:10684–10693

    PubMed  CAS  PubMed Central  Google Scholar 

  179. Grey F, Meyers H, White EA et al (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3:e163

    PubMed  PubMed Central  Google Scholar 

  180. Li S, Zhu J, Zhang W et al (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124:175–184

    PubMed  CAS  Google Scholar 

  181. Yamamoto T, Suzuki S, Radsak K et al (1998) The UL112/113 gene products of human cytomegalovirus which colocalize with viral DNA in infected cell nuclei are related to efficient viral DNA replication. Virus Res 56:107–114

    PubMed  CAS  Google Scholar 

  182. Wells R, Stensland L, Vieira J (2009) The human cytomegalovirus UL112-113 locus can activate the full Kaposi’s sarcoma-associated herpesvirus lytic replication cycle. J Virol 83:4695–4699

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Lee S, Song J, Kim S et al (2013) Selective degradation of host MicroRNAs by an intergenic HCMV noncoding RNA accelerates virus production. Cell Host Microbe 13:678–690

    PubMed  CAS  Google Scholar 

  184. Wang FZ, Weber F, Croce C et al (2008) Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82:9065–9074

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Poole E, McGregor Dallas SR, Colston J et al (2011) Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34(+) progenitors. J Gen Virol 92:1539–1549

    PubMed  CAS  Google Scholar 

  186. Sinclair JH, Reeves MB (2013) Human cytomegalovirus manipulation of latently infected cells. Viruses 5:2803–2824

    PubMed  PubMed Central  Google Scholar 

  187. Huang HC, Yu HR, Huang LT et al (2012) miRNA-125b regulates TNF-alpha production in CD14+ neonatal monocytes via post-transcriptional regulation. J Leukoc Biol 92:171–182

    PubMed  CAS  Google Scholar 

  188. Santhakumar D, Forster T, Laqtom NN et al (2010) Combined agonist–antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci U S A 107:13830–13835

    PubMed  CAS  PubMed Central  Google Scholar 

  189. Zhang S, Liu L, Wang R et al (2013) MiR-199a-5p promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and eNOS. Arch Virol 158:2443–2452

    PubMed  CAS  Google Scholar 

  190. Zhang S, Liu L, Wang R et al (2013) MicroRNA-217 promotes angiogenesis of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and FOXO3A. PLoS One 8:e83620

    PubMed  PubMed Central  Google Scholar 

  191. Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120:1524–1532

    PubMed  CAS  Google Scholar 

  192. Pecot CV, Rupaimoole R, Yang D et al (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427

    PubMed  PubMed Central  Google Scholar 

  193. Haneklaus M, Gerlic M, O’Neill LA et al (2013) miR-223: infection, inflammation and cancer. J Intern Med 274:215–226

    PubMed  CAS  Google Scholar 

  194. Fu M, Gao Y, Zhou Q et al (2014) Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 536:272–278

    PubMed  CAS  Google Scholar 

  195. Stark TJ, Arnold JD, Spector DH et al (2012) High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 86:226–235

    PubMed  CAS  PubMed Central  Google Scholar 

  196. Xiong Y, Fang JH, Yun JP et al (2010) Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51:836–845

    PubMed  CAS  Google Scholar 

  197. Mott JL, Kobayashi S, Bronk SF et al (2007) mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26:6133–6140

    PubMed  CAS  PubMed Central  Google Scholar 

  198. Li Y, Wang H, Tao K et al (2013) miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res 319:1094–1101

    PubMed  CAS  Google Scholar 

  199. O’Connor CM, Vanicek J, Murphy EA (2014) Host MicroRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J Virol 88:5524–5532

    PubMed  Google Scholar 

  200. Dolken L, Pfeffer S, Koszinowski UH (2009) Cytomegalovirus microRNAs. Virus Genes 38:355–364

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement number 320473-BacNK. Further support came from the GIF foundation, from the Lewis family foundation, the ICRF professorship grant, the Israeli Science Foundation, the Helmhotz Association, and the Rosetrees Trust (all to O.M.). O.M. is a Crown Professor of Molecular Immunology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Mandelboim.

Additional information

This article is a contribution to the special issue on Immune Modulation, properties and models of CMV - Guest Editor: Ofer Mandelboim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldberger, T., Mandelboim, O. The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Semin Immunopathol 36, 659–674 (2014). https://doi.org/10.1007/s00281-014-0447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0447-3

Keywords

Navigation