Skip to main content
Log in

18β-glycyrrhetinic acid suppresses Lewis lung cancer growth through protecting immune cells from ferroptosis

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

18β-glycyrrhetinic acid (GA), the main metabolite of glycyrrhizic acid extracted from the root of licorice, has been reported to possess anti-cancer and immunomodulatory activity, but the mechanisms are not well understood. Recent studies have shown that ferroptosis of immune cells is involved in tumor-associated immune suppression. The purpose of this study was to investigate whether the enhanced immune response via inhibiting immune cell ferroptosis contributed to the anticancer effect of 18β-GA.

Methods

Lewis Lung carcinoma mouse model and Murine CD8 + T cell culture model were used to examine the changes of immune response and ferroptosis of immune cells.

Results

We found that 18β-GA was effective against lung cancer accompanied by enhanced activation of tumor-infiltrating CD8+ T cells in Lewis Lung carcinoma mouse model. Furthermore, we demonstrated that the boosted immune response by GA was attributed to its ability to inhibit arachidonic acid (AA)-mediated CD8+ T ferroptosis via suppressing CD36 expression.

Conclusion

The findings of the present study unraveled a novel mechanism underlying the anti-cancer and immunomodulatory activity of 18β-GA and support that 18β-GA holds potential to be used as an immune enhancer for lung cancer prevention or treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71:7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Schabath MB, Cote ML (2019) Cancer progress and priorities: lung cancer. Cancer Epidemiol Biomarkers Prev 28:1563–1579. https://doi.org/10.1158/1055-9965.EPI-19-0221

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen P, Wu Q, Feng J, Yan L, Sun Y, Liu S, Xiang Y et al (2020) Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct Target Ther 5:51. https://doi.org/10.1038/s41392-020-0149-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kennedy LB, Salama AKS (2020) A review of cancer immunotherapy toxicity. CA Cancer J Clin 70:86–104. https://doi.org/10.3322/caac.21596

    Article  PubMed  Google Scholar 

  5. Lv H, Lv G, Chen C, Zong Q, Jiang G, Ye D, Cui X et al (2021) Nad(+) metabolism maintains inducible Pd-L1 expression to drive tumor immune evasion. Cell Metab 33:110–127 e115. https://doi.org/10.1016/j.cmet.2020.10.021

    Article  CAS  Google Scholar 

  6. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim R, Hashimoto A, Markosyan N, Tyurin VA, Tyurina YY, Kar G, Fu S et al (2022) Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612:338–346. https://doi.org/10.1038/s41586-022-05443-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q et al (2021) Cd36-mediated ferroptosis dampens intratumoral Cd 8(+) T cell effector function and impairs their antitumor ability. Cell Metab 33:1001–1012 e1005. https://doi.org/10.1016/j.cmet.2021.02.015

  9. Li X, Sun R, Liu R (2019) Natural products in licorice for the therapy of liver diseases: progress and future opportunities. Pharmacol Res 144:210–226. https://doi.org/10.1016/j.phrs.2019.04.025

    Article  CAS  PubMed  Google Scholar 

  10. Hasan MK, Ara I, Mondal MSA, Kabir Y (2021) Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 7:e07240. https://doi.org/10.1016/j.heliyon.2021.e07240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuang P, Zhao W, Su W, Zhang Z, Zhang L, Liu J, Ren G et al (2013) 18beta-glycyrrhetinic acid inhibits hepatocellular carcinoma development by reversing hepatic stellate cell-mediated immunosuppression in mice. Int J Cancer 132:1831–1841. https://doi.org/10.1002/ijc.27852

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Tang F, Li R, Chen Z, Lee SM, Fu C, Zhang J et al (2020) Dietary compound glycyrrhetinic acid suppresses tumor angiogenesis and growth by modulating antiangiogenic and proapoptotic pathways in vitro and in vivo. J Nutr Biochem 77:108268. https://doi.org/10.1016/j.jnutbio.2019.108268

    Article  CAS  PubMed  Google Scholar 

  13. Hussain H, Green IR, Shamraiz U, Saleem M, Badshah A, Abbas G, Rehman NU et al (2018) Therapeutic potential of glycyrrhetinic acids: a patent review (2010–2017). Expert Opin Ther Pat 28:383–398. https://doi.org/10.1080/13543776.2018.1455828

    Article  CAS  PubMed  Google Scholar 

  14. Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Fan L et al (2022) 18beta-glycyrrhetinic acid protects neuronal cells from ferroptosis through inhibiting labile iron accumulation and preventing coenzyme Q10 reduction. Biochem Biophys Res Commun 635:57–64. https://doi.org/10.1016/j.bbrc.2022.10.017

    Article  CAS  PubMed  Google Scholar 

  15. Asl MN, Hosseinzadeh H (2008) Review of pharmacological effects of Glycyrrhiza Sp. and its bioactive compounds. Pharmacol Res 22:709–724. https://doi.org/10.1002/ptr.2362

    Article  CAS  Google Scholar 

  16. Krahenbuhl S, Hasler F, Frey BM, Frey FJ, Brenneisen R, Krapf R (1994) Kinetics and dynamics of orally administered 18 beta-glycyrrhetinic acid in humans. J Clin Endocrinol Metab. 78:581–585. https://doi.org/10.1210/jcem.78.3.8126129

    Article  CAS  PubMed  Google Scholar 

  17. Farese S, Kruse A, Pasch A, Dick B, Frey BM, Uehlinger DE, Frey FJ (2009) Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney Int 76(8):877–884. https://doi.org/10.1038/ki.2009.269

    Article  CAS  PubMed  Google Scholar 

  18. Serra A, Uehlinger DE, Ferrari P, Dick B, Frey BM, Frey FJ, Vogt B (2002) Glycyrrhetinic acid decreases plasma potassium concentrations in patients with anuria. J Am Soc Nephrol 13(1):191–196. https://doi.org/10.1681/ASN.V131191

    Article  CAS  PubMed  Google Scholar 

  19. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER) (2005) Guidance for industry: estimating the maximum safe starting dose in adult healthy volunteers

  20. Ma X, Chen H, Cao L, Zhao S, Zhao C, Yin S, Hu H (2021) 18beta-Glycyrrhetinic acid improves high-intensity exercise performance by promoting glucose-dependent energy production and inhibiting oxidative stress in mice. Phytother Res 35:6932–6943. https://doi.org/10.1002/ptr.7310

    Article  CAS  PubMed  Google Scholar 

  21. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ravindran Menon D, Li Y, Yamauchi T, Osborne DG, Vaddi PK, Wempe MF, Zhai Z et al (2021) Egcg inhibits tumor growth in melanoma by targeting Jak-Stat signaling and its downstream Pd-L1/Pd-L2-Pd1 axis in tumors and enhancing cytotoxic T-cell responses. Pharmaceuticals (Basel) 14(11):1081. https://doi.org/10.3390/ph14111081

    Article  CAS  PubMed  Google Scholar 

  23. Liu L, Lim MA, Jung SN, Oh C, Won HR, Jin YL et al (2021) The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. Phytomedicine 92:153758. https://doi.org/10.1016/j.phymed

    Article  CAS  PubMed  Google Scholar 

  24. Shen C, Zhang Z, Tian Y, Li F, Zhou L, Jiang W, Yang L et al (2021) Sulforaphane enhances the antitumor response of chimeric antigen receptor T cells by regulating Pd-1/Pd-L1 pathway. BMC Med 19:283. https://doi.org/10.1186/s12916-021-02161-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shen X, Zhao B (2018) Efficacy of Pd-1 or Pd-L1 inhibitors and Pd-L1 expression status in cancer: meta-analysis. BMJ 362:k3529. https://doi.org/10.1136/bmj.k3529

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Liang L, Dai W, Cai G, Xu Y, Li X, Li Q et al (2016) Prognostic impact of programed cell death-1 (Pd-1) and Pd-ligand 1 (Pd-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer 15:55. https://doi.org/10.1186/s12943-016-0539-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Budimir N, Thomas GD, Dolina JS, Salek-Ardakani S (2022) Reversing T-cell exhaustion in cancer: lessons learned from Pd-1/Pd-L1 immune checkpoint blockade. Cancer Immunol Res 10:146–153. https://doi.org/10.1158/2326-6066.CIR-21-0515

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology of China [National Key Research and Development Program of China, 2023YFF1105202].

Funding

National Key Research and Development Program of China, 2018YFC1603706, Hongbo Hu.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Fan or Hongbo Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Sun, Z., Chen, H. et al. 18β-glycyrrhetinic acid suppresses Lewis lung cancer growth through protecting immune cells from ferroptosis. Cancer Chemother Pharmacol (2024). https://doi.org/10.1007/s00280-024-04639-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00280-024-04639-7

Keywords

Navigation