Skip to main content

Advertisement

Log in

Mirvetuximab soravtansine in ovarian cancer therapy: expert opinion on pharmacological considerations

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

ImmunoGen developed mirvetuximab soravtansine as an antibody–drug conjugate comprising of a humanized anti-folate receptor—α (FRα) monoclonal antibody of IgG1k subtype, a cleavable linker, and a cytotoxic payload, DM4. Mirvetuximab soravtansine was granted accelerated approval by the US FDA on November 14, 2022, for the treatment of adult patients with FRα positive, platinum-resistant epithelial ovarian, fallopian tube or primary peritoneal cancer who have received 1—3 prior systemic treatment regimens. The approval of mirvetuximab soravtansine represents a breakthrough for addressing the unmet medical needs of ovarian cancer, especially for up to 80% of patients who relapse and become resistant to platinum-based chemotherapy, resulting in poor prognosis and limited treatment options. However, it is my impression that addressing several pharmacological factors could improve the safety and efficacy of mirvetuximab soravtansine. This article summarizes the current pharmacological profile of mirvetuximab soravtansine and provides an expert opinion on pharmacological strategies for optimizing its safety and efficacy profile for the treatment of platinum-resistant ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Joubert, N et al., [4]. © 2020 Joubert, N et al., Distributed under a Creative Commons Attribution CC BY licence

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Food & Drug Administration Drug Approval Package: ELAHERE. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/761310Orig1s000ChemR.pdf. Accessed 2 Apr 2023

  2. Moore KN, Martin LP, O’Malley DM et al (2018) A review of mirvetuximab soravtansine in the treatment of platinum-resistant ovarian cancer. Future Oncol 14:123–136. https://doi.org/10.2217/fon-2017-0379

    Article  CAS  PubMed  Google Scholar 

  3. Ab O, Whiteman KR, Bartle LM et al (2015) IMGN853, a folate receptor-α (FRα)–targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRα -expressing tumors. Mol Cancer Ther 14:1605–1613. https://doi.org/10.1158/1535-7163.MCT-14-1095

    Article  CAS  PubMed  Google Scholar 

  4. Joubert N, Beck A, Dumontet C, Denevault-Sabourin C (2020) Antibody–Drug Conjugates: The Last Decade. Pharmaceuticals 13:245. https://doi.org/10.3390/ph13090245

  5. Lambert JM (2013) Drug-conjugated antibodies for the treatment of cancer: antibody-drug conjugates. Br J Clin Pharmacol 76:248–262. https://doi.org/10.1111/bcp.12044

    Article  CAS  PubMed  Google Scholar 

  6. Polson AG, Calemine-Fenaux J, Chan P et al (2009) Antibody-drug conjugates for the treatment of non–hodgkin’s lymphoma: target and linker-drug selection. Can Res 69:2358–2364. https://doi.org/10.1158/0008-5472.CAN-08-2250

    Article  CAS  Google Scholar 

  7. Widdison WC, Wilhelm SD, Cavanagh EE et al (2006) Semisynthetic maytansine analogues for the targeted treatment of cancer. J Med Chem 49:4392–4408. https://doi.org/10.1021/jm060319f

    Article  CAS  PubMed  Google Scholar 

  8. Oroudjev E, Lopus M, Wilson L et al (2010) Maytansinoid-antibody conjugates induce mitotic arrest by suppressing microtubule dynamic instability. Mol Cancer Ther 9:2700–2713. https://doi.org/10.1158/1535-7163.MCT-10-0645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goldmacher VS, Audette CA, Guan Y, et al (2015) High-Affinity Accumulation of a Maytansinoid in Cells via Weak Tubulin Interaction. PLoS ONE 10:e0117523. https://doi.org/10.1371/journal.pone.0117523

  10. Nerone M, Del Grande M, Sessa C, Colombo I (2022) Advancing antibody-drug conjugates in gynecological malignancies: myth or reality? Exploration of Targeted Anti-tumor Therapy 149–171. https://doi.org/10.37349/etat.2022.00077

  11. Food & Drug Administration FDA grants accelerated approval to mirvetuximab soravtansine-gynx for FRα positive, platinum-resistant epithelial ovarian, fallopian tube, or peritoneal cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-mirvetuximab-soravtansine-gynx-fra-positive-platinum-resistant. Accessed 31 Mar 2023

  12. Roche Roche receives FDA approval for VENTANA FOLR1 (FOLR1–2.1) RxDx Assay as the first IHC-based companion diagnostic to identify ovarian cancer patients eligible for ELAHERE. https://diagnostics.roche.com/us/en/news-listing/2022/roche-fda-approval-for-ventana-folr1-folr121-rxdx-assay.html. Accessed 31 Mar 2023

  13. Roche VENTANA FOLR1 (FOLR1–2.1) RxDx Assay label. 2022. https://www.accessdata.fda.gov/cdrh_docs/pdf22/P220006C.pdf. Accessed 31 Mar 2023

  14. ImmunoGen ElahereTM (mirvetuximab soravtansine-gynx) injection, for intravenous use. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761310s000lbl.pdf. Accessed 31 Mar 2023

  15. Matulonis UA, Lorusso D, Oaknin A, et al (2023) Efficacy and Safety of Mirvetuximab Soravtansine in Patients With Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study. JCO JCO.22.01900. https://doi.org/10.1200/JCO.22.01900

  16. Matulonis U, Lorusso D, Oaknin A et al (2022) Efficacy and safety of mirvetuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study (LBA 4). Gynecol Oncol 166:S50. https://doi.org/10.1016/S0090-8258(22)01297-5

    Article  Google Scholar 

  17. Coleman RL, Matulonis U, Lorusso D, et al (2022) O028/#376 Clinical benefit of mirvetuximab soravtansine in ovarian cancer patients with high folate receptor alpha expression: results from the soraya study. In: Focused Plenary Abstracts. BMJ Publishing Group Ltd, p A18.1-A18

  18. Ponte JF, Ab O, Lanieri L et al (2016) Mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, potentiates the activity of standard of care therapeutics in ovarian cancer models. Neoplasia 18:775–784. https://doi.org/10.1016/j.neo.2016.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Heo Y-A (2023) Mirvetuximab soravtansine: first approval. Drugs 83:265–273. https://doi.org/10.1007/s40265-023-01834-3

    Article  CAS  PubMed  Google Scholar 

  20. Martin LP, Konner JA, Moore KN et al (2017) Characterization of folate receptor alpha (FRα) expression in archival tumor and biopsy samples from relapsed epithelial ovarian cancer patients: a phase I expansion study of the FRα-targeting antibody-drug conjugate mirvetuximab soravtansine. Gynecol Oncol 147:402–407. https://doi.org/10.1016/j.ygyno.2017.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Erickson HK, Park PU, Widdison WC et al (2006) Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Can Res 66:4426–4433. https://doi.org/10.1158/0008-5472.CAN-05-4489

    Article  CAS  Google Scholar 

  22. Kovtun YV, Audette CA, Ye Y et al (2006) Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Can Res 66:3214–3221. https://doi.org/10.1158/0008-5472.CAN-05-3973

    Article  CAS  Google Scholar 

  23. Drewinko B, Patchen M, Yang LY, Barlogie B (1981) Differential killing efficacy of twenty antitumor drugs on proliferating and nonproliferating human tumor cells. Cancer Res 41:2328–2333

    CAS  PubMed  Google Scholar 

  24. Altwerger G, Bonazzoli E, Bellone S et al (2018) In Vitro and In Vivo Activity of IMGN853, an antibody-drug conjugate targeting folate receptor alpha linked to DM4, in biologically aggressive endometrial cancers. Mol Cancer Ther 17:1003–1011. https://doi.org/10.1158/1535-7163.MCT-17-0930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chelariu-Raicu A, Stur E, Ivan C et al (2020) Abstract 1237: biological effects of a FRα-targeting antibody-drug conjugate, IMGN853 ( mirvetuximab soravtansine ) in high-grade serous ovarian cancer. Can Res 80:1237–1237. https://doi.org/10.1158/1538-7445.AM2020-1237

    Article  Google Scholar 

  26. Moore KN, Lorusso D, Oaknin A et al (2022) 605P Population pharmacokinetic (PK) analysis of mirvetuximab soravtansine (MIRV) in patients with folate receptor α (FRα)-positive cancer. Ann Oncol 33:S822–S823. https://doi.org/10.1016/j.annonc.2022.07.733

    Article  Google Scholar 

  27. Moore KN, Angelergues A, Konecny GE, et al (2023) Phase III MIRASOL (GOG 3045/ENGOT-ov55) study: Initial report of mirvetuximab soravtansine vs. investigator’s choice of chemotherapy in platinum-resistant, advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate receptor-alpha expression. JCO 41:LBA5507–LBA5507. https://doi.org/10.1200/JCO.2023.41.17_suppl.LBA5507

  28. Bargh JD, Isidro-Llobet A, Parker JS, Spring DR (2019) Cleavable linkers in antibody–drug conjugates. Chem Soc Rev 48:4361–4374. https://doi.org/10.1039/C8CS00676H

    Article  CAS  PubMed  Google Scholar 

  29. Martín-Sabroso C, Lozza I, Torres-Suárez AI, Fraguas-Sánchez AI (2021) Antibody-antineoplastic conjugates in gynecological malignancies: current status and future perspectives. Pharmaceutics 13:1705. https://doi.org/10.3390/pharmaceutics13101705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Duerr C, Friess W (2019) Antibody-drug conjugates- stability and formulation. Eur J Pharm Biopharm 139:168–176. https://doi.org/10.1016/j.ejpb.2019.03.021

    Article  CAS  PubMed  Google Scholar 

  31. Steinfeld R, Grapp M, Kraetzner R et al (2009) Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. The American Journal of Human Genetics 85:354–363. https://doi.org/10.1016/j.ajhg.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  32. Richardson NC, Kasamon YL, Chen H et al (2019) FDA approval summary: brentuximab vedotin in first-line treatment of peripheral T-cell lymphoma. Oncologist 24:e180–e187. https://doi.org/10.1634/theoncologist.2019-0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Prince HM, Kim YH, Horwitz SM et al (2017) Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. The Lancet 390:555–566. https://doi.org/10.1016/S0140-6736(17)31266-7

    Article  CAS  Google Scholar 

  34. Bartsch R (2020) Trastuzumab-deruxtecan: an investigational agent for the treatment of HER2-positive breast cancer. Expert Opin Investig Drugs 29:901–910. https://doi.org/10.1080/13543784.2020.1792443

    Article  CAS  PubMed  Google Scholar 

  35. Nwabufo CK (2022) Relevance of ABC transporters in drug development. Curr Drug Metab 23:434–446. https://doi.org/10.2174/1389200223666220621113524

    Article  CAS  PubMed  Google Scholar 

  36. Nwabufo CK, Aigbogun OP (2022) Diagnostic and therapeutic agents that target alpha - synuclein in Parkinson ’ s disease. J Neurol. https://doi.org/10.1007/s00415-022-11267-9

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoosain FG, Choonara YE, Tomar LK, et al (2015) Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy. Biomed Res Int 2015:484963. https://doi.org/10.1155/2015/484963

  38. US Food and Drug Administration (2019) Immunogenicity Testing of Therapeutic Protein Products—Developing and Validating Assays for Anti-Drug Antibody Detection Guidance for Industry. https://www.fda.gov/media/119788/download. Accessed 28 Jul 2023

  39. Barbosa MDFS, Vielmetter J, Chu S et al (2006) Clinical link between MHC class II haplotype and interferon-beta (IFN-β) immunogenicity. Clin Immunol 118:42–50. https://doi.org/10.1016/j.clim.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  40. Chirmule N, Jawa V, Meibohm B (2012) Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J 14:296–302. https://doi.org/10.1208/s12248-012-9340-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuriakose A, Chirmule N, Nair P (2016) Immunogenicity of biotherapeutics: causes and association with posttranslational modifications. J Immunol Res 2016:1–18. https://doi.org/10.1155/2016/1298473

    Article  CAS  Google Scholar 

  42. Scharrer B, Neutzling, (1999) Incidence of inhibitors in haemophilia A patients - a review of recent studies of recombinant and plasma-derived factor VIII concentrates: INCIDENCE OF INHIBITORS IN HAEMOPHILIA A. Haemophilia 5:145–154. https://doi.org/10.1046/j.1365-2516.1999.00300.x

    Article  CAS  PubMed  Google Scholar 

  43. Jahn E-M, Schneider CK (2009) How to systematically evaluate immunogenicity of therapeutic proteins—regulatory considerations. New Biotechnol 25:280–286. https://doi.org/10.1016/j.nbt.2009.03.012

    Article  CAS  Google Scholar 

  44. Dunvald A-CD, Järvinen E, Mortensen C, Stage TB (2022) Clinical and molecular perspectives on inflammation-mediated regulation of drug metabolism and transport. Clin Pharmacol Ther 112:277–290. https://doi.org/10.1002/cpt.2432

    Article  CAS  PubMed  Google Scholar 

  45. Stanke-Labesque F, Gautier-Veyret E, Chhun S, et al (2020) Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol Ther 215:107627. https://doi.org/10.1016/j.pharmthera.2020.107627

  46. Wu K-C, Lin C-J (2019) The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: evidences in inflammatory diseases and age-related disorders. J Food Drug Anal 27:48–59. https://doi.org/10.1016/j.jfda.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  47. Nwabufo CK, Bendayan R (2022) Pharmacokinetic considerations to optimize clinical outcomes for COVID-19 drugs. Trends Pharmacol Sci 43:1041–1054. https://doi.org/10.1016/j.tips.2022.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nwabufo CK, Hoque MdT, Yip L et al (2023) SARS-CoV-2 infection dysregulates the expression of clinically relevant drug metabolizing enzymes in Vero E6 cells and membrane transporters in human lung tissues. Front Pharmacol 14:1124693. https://doi.org/10.3389/fphar.2023.1124693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trousil S, Lee P, Edwards RJ et al (2019) Altered cytochrome 2E1 and 3A P450-dependent drug metabolism in advanced ovarian cancer correlates to tumour-associated inflammation. Br J Pharmacol 176:3712–3722. https://doi.org/10.1111/bph.14776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rivory LP, Slaviero KA, Clarke SJ (2002) Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br J Cancer 87:277–280. https://doi.org/10.1038/sj.bjc.6600448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Slaviero KA, Clarke SJ, Rivory LP (2003) Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol 4:224–232. https://doi.org/10.1016/S1470-2045(03)01034-9

    Article  CAS  PubMed  Google Scholar 

  52. Lee EB, Daskalakis N, Xu C, et al (2017) Disease–Drug Interaction of Sarilumab and Simvastatin in Patients with Rheumatoid Arthritis. Clinical Pharmacokinetics 56:. https://doi.org/10.1007/s40262-016-0462-8

  53. Schmitt C, Kuhn B, Zhang X, et al (2011) Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Therapeutics 89:. https://doi.org/10.1038/clpt.2011.35

  54. Zhuang Y, De Vries DE, Xu Z, et al (2015) Evaluation of disease-mediated therapeutic protein-drug interactions between an anti-interleukin-6 monoclonal antibody (sirukumab) and cytochrome P450 activities in a phase 1 study in patients with rheumatoid arthritis using a cocktail approach. J Clin Pharmacol 55:. https://doi.org/10.1002/jcph.561

  55. Chaudhari S, Dey Pereira S, Asare-Warehene M et al (2021) Comorbidities and inflammation associated with ovarian cancer and its influence on SARS-CoV-2 infection. J Ovarian Res 14:39. https://doi.org/10.1186/s13048-021-00787-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu Z-S, Shu T, Kang L et al (2020) Temporal profiling of plasma cytokines, chemokines and growth factors from mild, severe and fatal COVID-19 patients. Sig Transduct Target Ther 5:100. https://doi.org/10.1038/s41392-020-0211-1

    Article  CAS  Google Scholar 

  57. Xu Z, Shi L, Wang Y et al (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8:420–422. https://doi.org/10.1016/S2213-2600(20)30076-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu J, Li S, Liu J, et al (2020) Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55:102763. https://doi.org/10.1016/j.ebiom.2020.102763

  59. Huang C, Wang Y, Li X, et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395:. https://doi.org/10.1016/S0140-6736(20)30183-5

  60. Yang Y, Shen C, Li J, et al (2020) Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. Infectious Dis (except HIV/AIDS)

  61. Li X, Xu S, Yu M et al (2020) Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 146:110–118. https://doi.org/10.1016/j.jaci.2020.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gorelik E, Landsittel DP, Marrangoni AM et al (2005) Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol Biomark Prev 14:981–987. https://doi.org/10.1158/1055-9965.EPI-04-0404

    Article  CAS  Google Scholar 

  63. Yabuno A, Matsushita H, Hamano T et al (2020) Identification of serum cytokine clusters associated with outcomes in ovarian clear cell carcinoma. Sci Rep 10:18503. https://doi.org/10.1038/s41598-020-75536-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gregoire M, Le Turnier P, Gaborit BJ et al (2020) Lopinavir pharmacokinetics in COVID-19 patients. J Antimicrob Chemother 75:2702–2704. https://doi.org/10.1093/jac/dkaa195

    Article  CAS  PubMed  Google Scholar 

  65. Salerno DM, Kovac D, Corbo H, et al (2021) SARS-CoV-2 infection increases tacrolimus concentrations in solid-organ transplant recipients. Clin Transplant 35:e14193. https://doi.org/10.1111/ctr.14193

  66. Le Carpentier EC, Canet E, Masson D et al (2022) Impact of Inflammation on Midazolam Metabolism in Severe COVID-19 Patients. Clin Pharmacol Ther 112:1033–1039. https://doi.org/10.1002/cpt.2698

    Article  CAS  PubMed  Google Scholar 

  67. Iversen DB, Andersen NE, Dalgård Dunvald A et al (2022) Drug metabolism and drug transport of the 100 most prescribed oral drugs. Basic Clin Pharma Tox 131:311–324. https://doi.org/10.1111/bcpt.13780

    Article  CAS  Google Scholar 

  68. US Food and Drug Administration (2020) In Vitro Drug Interaction Studies - Cytochrome P450 Enzyme and Transporter Mediated Drug Interactions. FDA Guidance 1:1–46

    Google Scholar 

  69. Moore KN, O’Malley DM, Vergote I et al (2018) Safety and activity findings from a phase 1b escalation study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with carboplatin in patients with platinum-sensitive ovarian cancer. Gynecol Oncol 151:46–52. https://doi.org/10.1016/j.ygyno.2018.07.017

    Article  CAS  PubMed  Google Scholar 

  70. O’Malley D, Richardson D, Vergote IB et al (2019) Mirvetuximab soravtansine, a folate receptor alpha (FRa)-targeting antibody-drug conjugate (ADC), in combination with carboplatin and bevacizumab: Initial results from a phase Ib study in patients (pts) with ovarian cancer. Ann Oncol 30:v419–v420. https://doi.org/10.1093/annonc/mdz250.036

    Article  Google Scholar 

  71. O’Malley DM, Matulonis UA, Birrer MJ et al (2020) Phase Ib study of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol 157:379–385. https://doi.org/10.1016/j.ygyno.2020.01.037

    Article  CAS  PubMed  Google Scholar 

  72. O’Malley DM, Oaknin A, Matulonis UA et al (2021) Mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients (pts) with platinum-agnostic ovarian cancer: Final analysis. JCO 39:5504–5504. https://doi.org/10.1200/JCO.2021.39.15_suppl.5504

    Article  Google Scholar 

  73. Moore KN, Borghaei H, O’Malley DM et al (2017) Phase 1 dose-escalation study of mirvetuximab soravtansine (IMGN853), a folate receptor α-targeting antibody-drug conjugate, in patients with solid tumors: Mirvetuximab Soravtansine Phase 1 Study. Cancer 123:3080–3087. https://doi.org/10.1002/cncr.30736

    Article  CAS  PubMed  Google Scholar 

  74. Moore KN, Oza AM, Colombo N et al (2021) Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol 32:757–765. https://doi.org/10.1016/j.annonc.2021.02.017

    Article  CAS  PubMed  Google Scholar 

  75. Gilbert L, Oaknin A, Matulonis UA et al (2023) Safety and efficacy of mirvetuximab soravtansine, a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol Oncol 170:241–247. https://doi.org/10.1016/j.ygyno.2023.01.020

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

CKN is a recipient of the Canadian Institutes of Health Research Doctoral Scholarship, Canadian Institutes of Health Research Doctoral Scholarship—Michael Smith Foreign Study Supplements Award, Ontario Graduate Scholarship, Pfizer Canada Graduate Fellowship, and Leslie Dan Faculty of Pharmacy Dean’s Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chukwunonso K. Nwabufo.

Ethics declarations

Conflict of interest

CKN was a former employee of Gilead Sciences. CKN is employed by OneDrug.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwabufo, C.K. Mirvetuximab soravtansine in ovarian cancer therapy: expert opinion on pharmacological considerations. Cancer Chemother Pharmacol 93, 89–105 (2024). https://doi.org/10.1007/s00280-023-04575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-023-04575-y

Keywords

Navigation