Skip to main content
Log in

Population pharmacokinetics of vactosertib, a new TGF-β receptor type Ι inhibitor, in patients with advanced solid tumors

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Vactosertib, a novel inhibitor of transforming growth factor-β type Ι receptor, is under development for the treatment of various cancers. The objective of this study was to characterize the population pharmacokinetics of vactosertib in patients with solid tumors.

Methods

Vactosertib population pharmacokinetics was assessed by nonlinear mixed-effects modelling of plasma concentration–time data obtained from a first-in-human phase 1 trial conducted in patients with advanced solid tumors. The final population pharmacokinetic model was constructed by assessing the effect of covariates on pharmacokinetic parameters including demographic characteristics, laboratory values, hepatic and renal function, and concomitant medications. The robustness of the final model was evaluated using a bootstrap method as well as visual predictive check based on Monte Carlo simulations and goodness-of-fit plots.

Results

A total of 559 concentrations from 29 patients were available for pharmacokinetic analysis. A two-compartment linear model with first-order absorption and absorption lag time adequately described the population pharmacokinetics of vactosertib. The estimates of apparent clearance (CL/F) and volume of central compartment (Vc/F) were 31.9 L/h (inter-individual variability, 0.481) and 82.9 L (inter-individual variability, 0.534), respectively. The mixture model accounts for both typical absorption profile in the majority of patients and distinct profile in some patients with uncommon gastrointestinal conditions. Body mass index was significantly associated with Vc/F.

Conclusions

The model developed in this study adequately describes the population pharmacokinetics of vactosertib in patients with advanced solid tumors. The pharmacokinetic characteristics assessed using the model would provide useful quantitative information to assist the future clinical development of vactosertib.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jin CH, Krishnaiah M, Sreenu D, Subrahmanyam VB, Rao KS, Lee HJ, Park S-J, Park H-J, Lee K, Sheen YY, Kim D-K (2014) Discovery of N-((4-([1,2,4]Triazolo[1,5-a]pyridin-6-yl)-5-(6-methylpyridin-2-yl)-1H-imidazol-2-yl)methyl)-2-fluoroaniline (EW-7197): a highly potent, selective, and orally bioavailable inhibitor of TGF-β type I receptor kinase as cancer immunotherapeutic/antifibrotic agent. J Med Chem 57(10):4213–4238. https://doi.org/10.1021/jm500115w

    Article  CAS  PubMed  Google Scholar 

  2. Akhurst RJ, Hata A (2012) Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 11(10):790

    Article  CAS  Google Scholar 

  3. Derynck R, Akhurst RJ, Balmain A (2001) TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29(2):117

    Article  CAS  Google Scholar 

  4. Yang L, Pang Y, Moses HL (2010) TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227

    Article  CAS  Google Scholar 

  5. Kim MJ, Park SA, Kim CH, Park SY, Kim JS, Kim DK, Nam JS, Sheen YY (2016) TGF-beta type I receptor kinase inhibitor EW-7197 suppresses cholestatic liver fibrosis by inhibiting HIF1alpha-induced epithelial mesenchymal transition. Cell Physiol Biochem 38(2):571–588. https://doi.org/10.1159/000438651

    Article  CAS  PubMed  Google Scholar 

  6. Son JY, Park SY, Kim SJ, Lee SJ, Park SA, Kim MJ, Kim SW, Kim DK, Nam JS, Sheen YY (2014) EW-7197, a novel ALK-5 kinase inhibitor, potently inhibits breast to lung metastasis. Mol Cancer Ther 13(7):1704–1716. https://doi.org/10.1158/1535-7163.mct-13-0903

    Article  CAS  PubMed  Google Scholar 

  7. Yoon JH, Jung SM, Park SH, Kato M, Yamashita T, Lee IK, Sudo K, Nakae S, Han JS, Kim OH, Oh BC, Sumida T, Kuroda M, Ju JH, Jung KC, Park SH, Kim DK, Mamura M (2013) Activin receptor-like kinase5 inhibition suppresses mouse melanoma by ubiquitin degradation of Smad4, thereby derepressing eomesodermin in cytotoxic T lymphocytes. EMBO Mol Med 5(11):1720–1739. https://doi.org/10.1002/emmm.201302524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Keedy VL, Bauer TM, Clarke JM, Hurwitz H, Baek I, Ha I, Ock C-Y, Nam SY, Kim M, Park N, Kim JY, Kim S-J (2018) Association of TGF-β responsive signature with anti-tumor effect of vactosertib, a potent, oral TGF-β receptor type I (TGFBRI) inhibitor in patients with advanced solid tumors. Journal of Clinical Oncology 36(15_suppl):3031. https://doi.org/10.1200/jco.2018.36.15_suppl.3031

    Article  Google Scholar 

  9. Powell J, Gobburu J (2007) Pharmacometrics at FDA: evolution and impact on decisions. Clin Pharmacol Ther 82(1):97–102

    Article  CAS  Google Scholar 

  10. Food, Administration D (2003) Exposure-response relationships–study design, data analysis, and regulatory applications. Guidance for Industry

  11. Lee JY, Garnett CE, Gobburu JV, Bhattaram VA, Brar S, Earp JC, Jadhav PR, Krudys K, Lesko LJ, Li F (2011) Impact of pharmacometric analyses on new drug approval and labelling decisions. Clin Pharmacokinet 50(10):627–635

    Article  Google Scholar 

  12. Samara E, Granneman R (1997) Role of population pharmacokinetics in drug development. A pharmaceutical industry perspective. Clin Pharmacokinet 32(4):294–312. https://doi.org/10.2165/00003088-199732040-00003

    Article  CAS  PubMed  Google Scholar 

  13. Mould DR, Upton RN (2012) Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol 1(9):e6. https://doi.org/10.1038/psp.2012.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joerger M (2012) Covariate pharmacokinetic model building in oncology and its potential clinical relevance. AAPS J 14(1):119–132. https://doi.org/10.1208/s12248-012-9320-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Williams PJ, Ette EI (2000) The role of population pharmacokinetics in drug development in light of the food and drug administration’s ‘guidance for industry: population pharmacokinetics’. Clin Pharmacokinet 39(6):385–395. https://doi.org/10.2165/00003088-200039060-00001

    Article  CAS  PubMed  Google Scholar 

  16. Le Tourneau C, Lee JJ, Siu LL (2009) Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst 101(10):708–720

    Article  Google Scholar 

  17. Wang Y (2007) Derivation of various NONMEM estimation methods. J Pharmacokinet Pharmacodyn 34(5):575–593. https://doi.org/10.1007/s10928-007-9060-6

    Article  PubMed  Google Scholar 

  18. Aoki Y, Nordgren R, Hooker AC (2016) Preconditioning of nonlinear mixed effects models for stabilisation of variance-covariance matrix computations. AAPS J 18(2):505–518. https://doi.org/10.1208/s12248-016-9866-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pai MP, Paloucek FP (2000) The origin of the “ideal” body weight equations. Ann Pharmacother 34(9):1066–1069

    Article  CAS  Google Scholar 

  20. Mosteller R (1987) Simplified calculation of body surface area. N Engl J Med 317:1098

    CAS  PubMed  Google Scholar 

  21. Boer P (1984) Estimated lean body mass as an index for normalization of body fluid volumes in humans. Am J Physiol 247(4):F632–F636

    CAS  PubMed  Google Scholar 

  22. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  Google Scholar 

  23. Hutmacher MM, Kowalski KG (2015) Covariate selection in pharmacometric analyses: a review of methods. Br J Clin Pharmacol 79(1):132–147. https://doi.org/10.1111/bcp.12451

    Article  PubMed  Google Scholar 

  24. Yu M, Gao Z, Dai X, Gong H, Zhang L, Chen X, Zhong DF, Sy SK (2017) Population pharmacokinetic and covariate analysis of apatinib, an oral tyrosine kinase inhibitor, in healthy volunteers and patients with solid tumors. Clin Pharmacokinet 56(1):65–76. https://doi.org/10.1007/s40262-016-0427-y

    Article  CAS  PubMed  Google Scholar 

  25. Lacy S, Yang B, Nielsen J, Miles D, Nguyen L, Hutmacher M (2018) A population pharmacokinetic model of cabozantinib in healthy volunteers and patients with various cancer types. Cancer Chemother Pharmacol 81(6):1071–1082. https://doi.org/10.1007/s00280-018-3581-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robarge JD, Metzger IF, Lu J, Thong N, Skaar TC, Desta Z, Bies RR (2017) Population pharmacokinetic modeling to estimate the contributions of genetic and nongenetic factors to efavirenz disposition. Antimicrob Agents Chemother 61(1):e01813–e01816. https://doi.org/10.1128/aac.01813-16

    Article  CAS  PubMed  Google Scholar 

  27. Klünder B, Mittapalli RK, Mohamed M-EF, Friedel A, Noertersheuser P, Othman AA (2019) Population pharmacokinetics of upadacitinib using the immediate-release and extended-release formulations in healthy subjects and subjects with rheumatoid arthritis: analyses of phase I-III clinical trials. Clin Pharmacokinet. https://doi.org/10.1007/s40262-019-00739-3

    Article  PubMed  PubMed Central  Google Scholar 

  28. Katz P, Xue S, Castell D (2001) Control of intragastric pH with omeprazole 20 mg, omeprazole 40 mg and lansoprazole 30 mg. Aliment Pharmacol Ther 15(5):647–652

    Article  CAS  Google Scholar 

  29. Chincarini M, Zamboni GA, Pozzi Mucelli R (2018) Major pancreatic resections: normal postoperative findings and complications. Insights Imaging 9(2):173–187. https://doi.org/10.1007/s13244-018-0595-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kang CM, Lee JH (2015) Pathophysiology after pancreaticoduodenectomy. World J Gastroenterol 21(19):5794–5804. https://doi.org/10.3748/wjg.v21.i19.5794

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, Gowland PA, Spiller RC, Amidon GE, Marciani L (2014) Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm 11(9):3039–3047. https://doi.org/10.1021/mp500210c

    Article  CAS  PubMed  Google Scholar 

  32. Steingoetter A, Fox M, Treier R, Weishaupt D, Marincek B, Boesiger P, Fried M, Schwizer W (2006) Effects of posture on the physiology of gastric emptying: a magnetic resonance imaging study. Scand J Gastroenterol 41(10):1155–1164. https://doi.org/10.1080/00365520600610451

    Article  PubMed  Google Scholar 

  33. Umenai T, Arai N, Chihara E (2009) Effect of the preliminary hydration on gastric emptying time for water in healthy volunteers. Acta Anaesthesiol Scand 53(2):223–226. https://doi.org/10.1111/j.1399-6576.2008.01832.x

    Article  CAS  PubMed  Google Scholar 

  34. Jung SY, Hwang S, Clarke JM, Bauer TM, Keedy VL, Lee H, Park N, Kim SJ, Lee JI (2019) Pharmacokinetic characteristics of vactosertib, a new activin receptor-like kinase 5 inhibitor, in patients with advanced solid tumors in a first-in-human phase 1 study. Invest New Drugs. https://doi.org/10.1007/s10637-019-00835-y

    Article  PubMed  Google Scholar 

  35. Wente MN, Bassi C, Dervenis C, Fingerhut A, Gouma DJ, Izbicki JR, Neoptolemos JP, Padbury RT, Sarr MG, Traverso LW (2007) Delayed gastric emptying (DGE) after pancreatic surgery: a suggested definition by the international study group of pancreatic surgery (ISGPS). Surgery 142(5):761–768

    Article  Google Scholar 

  36. Park Y-C, Kim S-W, Jang J-Y, Ahn YJ, Park Y-H (2003) Factors influencing delayed gastric emptying after pylorus-preserving pancreatoduodenectomy. J Am Coll Surg 196(6):859–865

    Article  Google Scholar 

  37. Parmar AD, Sheffield KM, Vargas GM, Pitt HA, Kilbane EM, Hall BL, Riall TS (2013) Factors associated with delayed gastric emptying after pancreaticoduodenectomy. HPB 15(10):763–772

    Article  Google Scholar 

  38. Gueorguieva I, Cleverly AL, Stauber A, Pillay NS, Rodon JA, Miles CP, Yingling JM, Lahn MM (2014) Defining a therapeutic window for the novel TGF-β inhibitor LY2157299 monohydrate based on a pharmacokinetic/pharmacodynamic model. Br J Clin Pharmacol 77(5):796–807

    Article  CAS  Google Scholar 

  39. Eleveld DJ, Proost JH, Vereecke H, Absalom AR, Olofsen E, Vuyk J, Struys MMJATJotASoA (2017) An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology 126(6):1005–1018

    Article  CAS  Google Scholar 

  40. Hazendonk H, Fijnvandraat K, Lock J, Driessens M, Van Der Meer F, Meijer K, Kruip M, Laros-van Gorkom B, Peters M, de Wildt SJh (2016) A population pharmacokinetic model for perioperative dosing of factor VIII in hemophilia A patients. Haematologica 101(10):1159–1169

    Article  Google Scholar 

  41. McCune JS, Bemer MJ, Barrett JS, Scott Baker K, Gamis AS, Holford NHG (2014) Busulfan in infant to adult hematopoietic cell transplant recipients: a population pharmacokinetic model for initial and bayesian dose personalization. J Clin Cancer Res 20(3):754–763. https://doi.org/10.1158/1078-0432.CCR-13-1960

    Article  CAS  Google Scholar 

  42. Bonate PL, Steimer J-L (2011) Pharmacokinetic-pharmacodynamic modeling and simulation. Springer, Berlin

    Book  Google Scholar 

  43. Eleveld DJ, Proost JH, Absalom AR, Struys MMJCp (2011) Obesity and allometric scaling of pharmacokinetics. Clin Pharmacokinet 50(11):751–753

    Article  CAS  Google Scholar 

  44. Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB (1996) How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 143(3):228–239

    Article  CAS  Google Scholar 

  45. Jaber LA, Antal EJ, Slaughter RL, Welshman IR (1993) The pharmacokinetics and pharmacodynamics of 12 weeks of glyburide therapy in obese diabetics. Eur J Clin Pharmacol 45(5):459–463. https://doi.org/10.1007/bf00315518

    Article  CAS  PubMed  Google Scholar 

  46. Reiss RA, Haas CE, Karki SD, Gumbiner B, Welle SL, Carson SW (1994) Lithium pharmacokinetics in the obese. Clin Pharmacol Ther 55(4):392–398. https://doi.org/10.1038/clpt.1994.47

    Article  CAS  PubMed  Google Scholar 

  47. Pai MP, Bearden DT (2007) Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy 27(8):1081–1091. https://doi.org/10.1592/phco.27.8.1081

    Article  CAS  PubMed  Google Scholar 

  48. Jain R, Chung SM, Jain L, Khurana M, Lau SW, Lee JE, Vaidyanathan J, Zadezensky I, Choe S, Sahajwalla CG (2011) Implications of obesity for drug therapy: limitations and challenges. Clin Pharmacol Ther 90(1):77–89. https://doi.org/10.1038/clpt.2011.104

    Article  CAS  PubMed  Google Scholar 

  49. Meng L, Mui E, Holubar MK, Deresinski SC (2017) Comprehensive guidance for antibiotic dosing in obese adults. Pharmacotherapy 37(11):1415–1431. https://doi.org/10.1002/phar.2023

    Article  PubMed  Google Scholar 

  50. Baathe S, Hamren B, Karlsson MO, Wollbratt M, Grind M, Eriksson UG (2006) Population pharmacokinetics of melagatran, the active form of the oral direct thrombin inhibitor ximelagatran, in atrial fibrillation patients receiving long-term anticoagulation therapy. Clin Pharmacokinet 45(8):803–819. https://doi.org/10.2165/00003088-200645080-00004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge all the patients and study personnel who participated in the phase 1 study. This work was supported by the Research Institutes of Pharmaceutical Science in Seoul National University. Additional support was provided by the National OncoVenture/National Cancer Center funded by Ministry of Health and Welfare, Republic of Korea (No. HI17C2196).

Funding

This study was sponsored by MedPacto, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun Kyoung Chung or Jangik I. Lee.

Ethics declarations

Conflict of interest

JIL and EKC have received research funding from MedPacto, Inc. JMC, TMB and VLK received grant from MedPacto, Inc. for conduct of the phase 1 clinical trial as principal investigators. JMC has received research grant as a principal investigator from Bristol-Myers Squibb, Eli Lilly, Genentech, Spectrum, Adaptimmune, MedPacto, Bayer, AbbVie, and Moderna, and served as an advisory consultant for AstraZeneca, Guardant, Merck and Eli Lilly. TMB has received research grant from Daiichi Sankyo, Incyte, Mirati Therapeutics, MedImmune, Abbvie, AstraZeneca, Merck, Eli Lilly, GlaxoSmithKline, Novartis, Genentech, Deciphera, Merrimack, Immunogen, Millennium, Roche, Aileron Therapeutics, Bristol-Myers Squibb, Amgen, Onyx, Sanofi, Boehringer-Ingelheim, Astellas Pharma, Janssen, Clovis Oncology, Takeda, Karyopharm Therapeutics, Foundation Medicine, and ARMO Biosciences. VLK is a consultant for Karyopharm Therapeutics, and has research funding from Plexxicon, Eli Lilly, Daiichi Sankyo, BioMed Valley Discoveries, Immune Design, GlaxoSmithKline, TRACON Pharma, and Advenchen Laboratories. SJK has a personal financial interest as a shareholder in MedPacto, Inc. SH is an employee of MedPacto, Inc. Other remaining authors have nothing to disclose.

Ethical approval

All procedures involving human participants performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Eun Kyoung Chung and Jangik I. Lee contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S.Y., Yug, J.S., Clarke, J.M. et al. Population pharmacokinetics of vactosertib, a new TGF-β receptor type Ι inhibitor, in patients with advanced solid tumors. Cancer Chemother Pharmacol 85, 173–183 (2020). https://doi.org/10.1007/s00280-019-03979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03979-z

Keywords

Navigation