Skip to main content

Advertisement

Log in

Differential expression pattern of protein markers for predicting chemosensitivity of dexamethasone-based chemotherapy of B cell acute lymphoblastic leukemia

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Dexamethasone is considered as a direct chemotherapeutic agent in the treatment of pediatric acute lymphoblastic leukemia (ALL). Beside the advantages of the drug, some problems arising from the dose-related side effects are challenging issues during the treatment. Accordingly, the classification of patients to dexamethasone sensitive and resistance groups can help to select optimizing the therapeutic dose with the lowest adverse effects particularly in sensitive cases. For this purpose, we investigated inhibited proliferation and induced cytotoxicity in NALM-6 cells, as sensitive cells, after dexamethasone treatment. In addition, comparative protein expression analysis using the 2DE–MALDI–TOF MS technique was performed to identify the specific altered proteins. In addition, we evaluated mRNA expression levels of the identified proteins in bone-marrow samples from pediatric ALL patients using the real-time q-PCR method. Eventually, proteomic analysis revealed a combination of biomarkers, including capping proteins (CAPZA1 and CAPZB), chloride channel (CLIC1), purine nucleoside phosphorylase (PNP), and proteasome activator (PSME1), in response to the dexamethasone treatment. In addition, our results indicated low expression of identified proteins at both the mRNA and protein expression levels after drug treatment. Moreover, quantitative real-time PCR data analysis indicated that independent of the molecular subtypes of the leukemia, CAPZA1, CAPZB, CLIC1, and PNP expression levels were lower in ALL samples than normal samples, although PSME1 expression level was higher in ALL samples than normal samples. Furthermore, the expression level of all proteins (except PSME1) was different between high-risk and standard-risk patients that suggesting the prognostic value of them. In conclusion, our study suggests a panel of biomarkers comprising CAPZA1, CAPZB, CLIC1, PNP, and PSME1 as early diagnosis and treatment evaluation markers that may differentiate cancer cells which are presumably to benefit from dexamethasone-based chemotherapy and may facilitate the prediction of clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Inaba H, Pui CH (2010) Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol 11(11):1096–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Harmon JM, Norman MR, Fowlkes BJ, Thompson EB (1979) Dexamethasone induces irreversible G1 arrest and death of a human lymphoid cell line. J Cell Physiol 98(2):267–278

    Article  CAS  PubMed  Google Scholar 

  3. Strauss AJ, Su JT, Dalton VM, Gelber RD, Sallan SE, Silverman LB (2001) Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 19:3066–3072

    Article  CAS  PubMed  Google Scholar 

  4. Gaynon PS, Angiolillo AL, Carroll WL et al (2010) Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983-2002: a Children’s Oncology Group Report. Leukemia 24(2):285–297

    Article  CAS  PubMed  Google Scholar 

  5. Pui C-H, Mullighan CG, Evans WE, Relling MV (2012) Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood 120(6):1165–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cooper SL, Brown PA (2015) Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin N Am 62(1):61–73

    Article  Google Scholar 

  7. Kalia M (2015) Biomarkers for personalized oncology: recent advances and future challenges. Metabolism 64(3 Suppl 1):S16–S21

    Article  CAS  PubMed  Google Scholar 

  8. Minasian L, Rosen O, Auclair D, Rahman A, Pazdur R, Schilsky RL (2014) Optimizing dosing of oncology drugs. Clin Pharmacol Ther 96:572–579

    Article  CAS  PubMed  Google Scholar 

  9. Schwaederle M, Zhao M, Lee JJ (2015) Impact of precision medicine in diverse cancers: a meta-analysis of phase II clinical trials. J Clin Oncol 33(32):3817–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. López Villar E, Wu D, Cho WC, Madero L, Wang X (2014) Proteomics-based discovery of biomarkers for paediatric acute lymphoblastic leukaemia: challenges and opportunities. J Cell Mol Med 18(7):1239–1246

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dehghan-Nayeri N, Rezaei-Tavirani M, Omrani MD, Gharehbaghian A, Goudarzi Pour K, Eshghi P (2016) Identification of potential predictive markers of dexamethasone resistance in childhood acute lymphoblastic leukemia. J Cell Commun Signal. doi:10.1007/s12079-016-0357-3

    PubMed  PubMed Central  Google Scholar 

  12. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mi N, Chen Y, Wang S et al (2015) CapZ regulates autophagosomal membrane shaping by promoting actin assembly inside the isolation membrane. Nat Cell Biol 17(9):1112–1123

    Article  CAS  PubMed  Google Scholar 

  14. Sun D, Zhou M, Kowolik CM et al (2011) Differential expression patterns of capping protein, protein phosphatase 1, and casein kinase 1 may serve as diagnostic markers for malignant melanoma. Melanoma Res 21(4):335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cooper JA, Sept D (2008) New insights into mechanism and regulation of actin capping protein. Int Rev Cell Mol Biol 267:183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng S, Lin S, Zou J, Wang Y, Ji Q, Lv Z (2015) Association between rs12045440 polymorphism in the CAPZB intron and serum TSH concentrations in Chinese thyroid tumor patients. Int J Endocrinol 2015. doi:10.1155/2015/250542

  17. Lee Y-J, Jeong S-H, Hong S-C et al (2013) Prognostic value of CAPZA1 overexpression in gastric cancer. Int J Oncol 42(5):1569–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Thompson CC, Ashcroft FJ, Patel S et al (2007) Pancreatic cancer cells overexpress gelsolin family-capping proteins, which contribute to their cell motility. Gut 56(1):95–106

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, He S, Tu Y et al (2012) Elevated expression of chloride intracellular channel 1 is correlated with poor prognosis in human gliomas. J Exp Clin Cancer Res 31:44

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tung JJ, Kitajewski J (2010) Chloride intracellular channel 1 functions in endothelial cell growth and migration. J Angiogenes Res 2:23

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peretti M, Angelini M, Savalli N, Florio T, Yuspa SH, Mazzanti M (2015) Chloride channels in cancer: focus on chloride intracellular channel 1 and 4 (CLIC1 AND CLIC4) proteins in tumor development and as novel therapeutic targets. Biochim Biophys Acta 1848(10 Pt B):2523–2531

    Article  CAS  PubMed  Google Scholar 

  22. Tian Y, Guan Y, Jia Y, Meng Q, Yang J (2014) Chloride intracellular channel 1 regulates prostate cancer cell proliferation and migration through the MAPK/ERK pathway. Cancer Biother Radiopharm 29(8):339–344

    Article  CAS  PubMed  Google Scholar 

  23. Ding Q, Li M, Wu X et al (2015) CLIC1 overexpression is associated with poor prognosis in gallbladder cancer. Tumour Biol 36(1):193–198

    Article  CAS  PubMed  Google Scholar 

  24. Wang P, Zhang C, Yu P et al (2012) Regulation of colon cancer cell migration and invasion by CLIC1-mediated RVD. Mol Cell Biochem 365(1–2):313–321

    Article  CAS  PubMed  Google Scholar 

  25. Ma PF, Chen JQ, Wang Z, Liu JL, Li BP (2012) Function of chloride intracellular channel 1 in gastric cancer cells. World J Gastroenterol 18(24):3070–3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang W, Xu X, Wang W et al (2011) The expression and clinical significance of CLIC1 and HSP27 in lung adenocarcinoma. Tumour Biol 32(10):1199–1208

    Article  PubMed  Google Scholar 

  27. Giuliani P, Zuccarini M, Buccella S et al (2016) Development of a new HPLC method using fluorescence detection without derivatization for determining purine nucleoside phosphorylase activity in human plasma. J Chromatogr B 15(1009–1010):114–121

    Article  Google Scholar 

  28. Balakrishnan K, Verma D, O’Brien S et al (2010) Phase 2 and pharmacodynamic study of oral forodesine in patients with advanced, fludarabine-treated chronic lymphocytic leukemia. Blood 116:886–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kojima S, Chiyomaru T, Kawakami K et al (2012) Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br J Cancer 106(2):405–413

    Article  CAS  PubMed  Google Scholar 

  30. Yamasaki T, Yoshino H, Enokida H et al (2012) Novel molecular targets regulated by tumor suppressors microRNA-1 and microRNA-133a in bladder cancer. Int J Oncol 40(6):1821–1830

    CAS  PubMed  Google Scholar 

  31. Sanfilippo O, Camici M, Tozzi MG et al (1994) Relationship between the levels of purine salvage pathway enzymes and clinical/biological aggressiveness of human colon carcinoma. Cancer Biochem Biophys 14(1):57–66

    CAS  PubMed  Google Scholar 

  32. Pavlou MP, Dimitromanolakis A, Martinez-Morillo E, Smid M, Foekens JA, Diamandis EP (2014) Integrating meta-analysis of microarray data and targeted proteomics for biomarker identification: application in breast cancer. J Proteome Res 13(6):2897–2909

    Article  CAS  PubMed  Google Scholar 

  33. Zhang L, Hou Y, Wu K, Li D (2012) Comparative proteomics analysis of chronic atrophic gastritis: changes of protein expression in chronic atrophic gastritis without Helicobacter pylori infection. Braz J Med Biol Res 45(3):273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang D, Lim SG, Koay ES (2007) Proteomic identification of down-regulation of oncoprotein DJ-1 and proteasome activator subunit 1 in hepatitis B virus-infected well-differentiated hepatocellular carcinoma. Int J Oncol 31:577–584

    CAS  PubMed  Google Scholar 

  35. Miyagi T, Tatsumi T, Takehara T et al (2003) Impaired expression of proteasome subunits and human leukocyte antigens class I in human colon cancer cells. J Gastroenterol Hepatol 18:32–40

    Article  CAS  PubMed  Google Scholar 

  36. Lemaire R, Menguellet SA, Stauber J et al (2007) Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment is a new potential ovary cancer biomarker. J Proteome Res 6:4127–4134

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Wang K, Zhang J, Liu SS, Dai L, Zhang JY (2011) Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. J Proteome Res 10(6):2863–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sánchez-Martín D, Martínez-Torrecuadrada J, Teesalu T et al (2013) Proteasome activator complex PA28 identified as an accessible target in prostate cancer by in vivo selection of human antibodies. Proc Natl Acad Sci USA 110(34):13791–13796

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muñiz Lino MA, Palacios-Rodríguez Y, Rodríguez-Cuevas S et al (2014) Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. J Proteomics 5(111):198–211

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Gharehbaghian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan-Nayeri, N., Eshghi, P., Pour, K.G. et al. Differential expression pattern of protein markers for predicting chemosensitivity of dexamethasone-based chemotherapy of B cell acute lymphoblastic leukemia. Cancer Chemother Pharmacol 80, 177–185 (2017). https://doi.org/10.1007/s00280-017-3347-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-017-3347-0

Keywords

Navigation