Skip to main content

Advertisement

Log in

Sorafenib metabolism, transport, and enterohepatic recycling: physiologically based modeling and simulation in mice

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study used uncertainty and sensitivity analysis to evaluate a physiologically based pharmacokinetic (PBPK) model of the complex mechanisms of sorafenib and its two main metabolites, sorafenib glucuronide and sorafenib N-oxide in mice.

Methods

A PBPK model for sorafenib and its two main metabolites was developed to explain disposition in mice. It included relevant influx (Oatp) and efflux (Abcc2 and Abcc3) transporters, hepatic metabolic enzymes (CYP3A4 and UGT1A9), and intestinal β-glucuronidase. Parameterization of drug-specific processes was based on in vitro, ex vivo, and in silico data along with plasma and liver pharmacokinetic data from single and multiple transporter knockout mice.

Results

Uncertainty analysis demonstrated that the model structure and parameter values could explain the observed variability in the pharmacokinetic data. Global sensitivity analysis demonstrated the global effects of metabolizing enzymes on sorafenib and metabolite disposition and the local effects of transporters on their respective substrate exposures. In addition, through hypothesis testing, the model supported that the influx transporter Oatp is a weak substrate for sorafenib and a strong substrate for sorafenib glucuronide and that the efflux transporter Abcc2 is not the only transporter affected in the Abcc2 knockout mouse.

Conclusions

Translation of the mouse model to humans for the purpose of explaining exceptionally high human pharmacokinetic variability and its relationship with exposure-dependent dose-limiting toxicities will require delineation of the importance of these processes on disposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fabian MA, Biggs WH 3rd, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lelias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23(3):329–336. doi:10.1038/nbt1068

    Article  CAS  PubMed  Google Scholar 

  2. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844. doi:10.1038/nrd2130

    Article  CAS  PubMed  Google Scholar 

  3. Mori S, Cortes J, Kantarjian H, Zhang W, Andreef M, Ravandi F (2008) Potential role of sorafenib in the treatment of acute myeloid leukemia. Leuk Lymphoma 49(12):2246–2255. doi:10.1080/10428190802510349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Inaba H, Rubnitz JE, Coustan-Smith E, Li L, Furmanski BD, Mascara GP, Heym KM, Christensen R, Onciu M, Shurtleff SA, Pounds SB, Pui CH, Ribeiro RC, Campana D, Baker SD (2011) Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol 29(24):3293–3300. doi:10.1200/JCO.2011.34.7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gadaleta-Caldarola G, Infusino S, Divella R, Ferraro E, Mazzocca A, De Rose F, Filippelli G, Abbate I, Brandi M (2015) Sorafenib: 10 years after the first pivotal trial. Future Oncol 11(13):1863–1880. doi:10.2217/fon.15.85

    Article  CAS  PubMed  Google Scholar 

  6. Fukudo M, Ito T, Mizuno T, Shinsako K, Hatano E, Uemoto S, Kamba T, Yamasaki T, Ogawa O, Seno H, Chiba T, Matsubara K (2014) Exposure–toxicity relationship of sorafenib in Japanese patients with renal cell carcinoma and hepatocellular carcinoma. Clin Pharmacokinet 53(2):185–196. doi:10.1007/s40262-013-0108-z

    Article  CAS  PubMed  Google Scholar 

  7. Henin E, Blanchet B, Boudou-Rouquette P, Thomas-Schoemann A, Freyer G, Vidal M, Goldwasser F, Tod M (2014) Fractionation of daily dose increases the predicted risk of severe sorafenib-induced hand-foot syndrome (HFS). Cancer Chemother Pharmacol 73(2):287–297. doi:10.1007/s00280-013-2352-1

    Article  CAS  PubMed  Google Scholar 

  8. Boudou-Rouquette P, Ropert S, Mir O, Coriat R, Billemont B, Tod M, Cabanes L, Franck N, Blanchet B, Goldwasser F (2012) Variability of sorafenib toxicity and exposure over time: a pharmacokinetic/pharmacodynamic analysis. Oncologist 17(9):1204–1212. doi:10.1634/theoncologist.2011-0439

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drenberg CD, Baker SD, Sparreboom A (2013) Integrating clinical pharmacology concepts in individualized therapy with tyrosine kinase inhibitors. Clin Pharmacol Ther 93(3):215–219. doi:10.1038/clpt.2012.247

    Article  CAS  PubMed  Google Scholar 

  10. Saber-Mahloogi H, Morse DE (2005) Pharmacology review-Sorafenib. Center for Drug Evaluation and Research, Rockville

    Google Scholar 

  11. Ghassabian S, Rawling T, Zhou F, Doddareddy MR, Tattam BN, Hibbs DE, Edwards RJ, Cui PH, Murray M (2012) Role of human CYP3A4 in the biotransformation of sorafenib to its major oxidized metabolites. Biochem Pharmacol 84(2):215–223. doi:10.1016/j.bcp.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  12. Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P (2006) Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 57(5):685–692. doi:10.1007/s00280-005-0068-6

    Article  CAS  PubMed  Google Scholar 

  13. Miller AA, Murry DJ, Owzar K, Hollis DR, Kennedy EB, Abou-Alfa G, Desai A, Hwang J, Villalona-Calero MA, Dees EC, Lewis LD, Fakih MG, Edelman MJ, Millard F, Frank RC, Hohl RJ, Ratain MJ (2009) Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J Clin Oncol 27(11):1800–1805. doi:10.1200/JCO.2008.20.0931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaher H, Meyer zu Schwabedissen HE, Tirona RG, Cox ML, Obert LA, Agrawal N, Palandra J, Stock JL, Kim RB, Ware JA (2008) Targeted disruption of murine organic anion-transporting polypeptide 1b2 (Oatp1b2/Slco1b2) significantly alters disposition of prototypical drug substrates pravastatin and rifampin. Mol Pharmacol 74(2):320–329. doi:10.1124/mol.108.046458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chu XY, Strauss JR, Mariano MA, Li J, Newton DJ, Cai X, Wang RW, Yabut J, Hartley DP, Evans DC, Evers R (2006) Characterization of mice lacking the multidrug resistance protein MRP2 (ABCC2). J Pharmacol Exp Ther 317(2):579–589. doi:10.1124/jpet.105.098665

    Article  CAS  PubMed  Google Scholar 

  16. Vlaming ML, Pala Z, van Esch A, Wagenaar E, van Tellingen O, de Waart DR, Oude Elferink RP, van de Wetering K, Schinkel AH (2008) Impact of Abcc2 (Mrp2) and Abcc3 (Mrp3) on the in vivo elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate. Clin Cancer Res 14(24):8152–8160. doi:10.1158/1078-0432.CCR-08-1609

    Article  CAS  PubMed  Google Scholar 

  17. Zimmerman EI, Hu S, Roberts JL, Gibson AA, Orwick SJ, Li L, Sparreboom A, Baker SD (2013) Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res 19(6):1458–1466. doi:10.1158/1078-0432.CCR-12-3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swift B, Nebot N, Lee JK, Han T, Proctor WR, Thakker DR, Lang D, Radtke M, Gnoth MJ, Brouwer KL (2013) Sorafenib hepatobiliary disposition: mechanisms of hepatic uptake and disposition of generated metabolites. Drug Metab Dispos 41(6):1179–1186. doi:10.1124/dmd.112.048181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vasilyeva A, Durmus S, Li L, Wagenaar E, Hu S, Gibson AA, Panetta JC, Mani S, Sparreboom A, Baker SD, Schinkel AH (2015) Hepatocellular shuttling and recirculation of sorafenib-glucuronide is dependent on Abcc2, Abcc3, and Oatp1a/1b. Cancer Res. doi:10.1158/0008-5472.can-15-0280

    Google Scholar 

  20. Jain L, Woo S, Gardner ER, Dahut WL, Kohn EC, Kummar S, Mould DR, Giaccone G, Yarchoan R, Venitz J, Figg WD (2011) Population pharmacokinetic analysis of sorafenib in patients with solid tumours. Br J Clin Pharmacol 72(2):294–305. doi:10.1111/j.1365-2125.2011.03963.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gallo JM (2013) Physiologically based pharmacokinetic models of tyrosine kinase inhibitors: a systems pharmacological approach to drug disposition. Clin Pharmacol Ther 93(3):236–238. doi:10.1038/clpt.2012.244

    Article  CAS  PubMed  Google Scholar 

  22. Pawaskar DK, Straubinger RM, Fetterly GJ, Hylander BH, Repasky EA, Ma WW, Jusko WJ (2013) Physiologically based pharmacokinetic models for everolimus and sorafenib in mice. Cancer Chemother Pharmacol 71(5):1219–1229. doi:10.1007/s00280-013-2116-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodgers T, Leahy D, Rowland M (2005) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94(6):1259–1276. doi:10.1002/jps.20322

    Article  CAS  PubMed  Google Scholar 

  24. Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95(6):1238–1257. doi:10.1002/jps.20502

    Article  CAS  PubMed  Google Scholar 

  25. Zimmerman EI, Roberts JL, Li L, Finkelstein D, Gibson A, Chaudhry AS, Schuetz EG, Rubnitz JE, Inaba H, Baker SD (2012) Ontogeny and sorafenib metabolism. Clin Cancer Res 18(20):5788–5795. doi:10.1158/1078-0432.CCR-12-1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Blower SM, Dowlatabadi H (1994) Sensitivity and uncertainty analysis of complex-models of disease transmission—an HIV model, as an example. Int Stat Rev 62(2):229–243. doi:10.2307/1403510

    Article  Google Scholar 

  27. Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol 254(1):178–196. doi:10.1016/j.jtbi.2008.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hu S, Chen Z, Franke R, Orwick S, Zhao M, Rudek MA, Sparreboom A, Baker SD (2009) Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin Cancer Res 15(19):6062–6069. doi:10.1158/1078-0432.CCR-09-0048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wagner C, Pan Y, Hsu V, Sinha V, Zhao P (2015) Predicting the effect of CYP3A inducers on the pharmacokinetics of substrate drugs using physiologically based pharmacokinetic (PBPK) modeling: an analysis of PBPK submissions to the US FDA. Clin Pharmacokinet. doi:10.1007/s40262-015-0330-y

    PubMed  Google Scholar 

  30. Maharaj AR, Barrett JS, Edginton AN (2013) A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J 15(2):455–464. doi:10.1208/s12248-013-9451-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the American Lebanese Syrian Associated Charities (ALSAC), USPHS Cancer Center Support Grant 3P30CA021765 (S.D. Baker), and NCI Grants 5R01CA138744 (S.D. Baker)

Author contributions

ANE, EIZ, AV, SDB, JCP wrote the manuscript. ANE, SDB, JCP designed the research. EIZ, AV performed experimental studies. ANE and JCP performed the research and analyzed the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Panetta.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 985 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edginton, A.N., Zimmerman, E.I., Vasilyeva, A. et al. Sorafenib metabolism, transport, and enterohepatic recycling: physiologically based modeling and simulation in mice. Cancer Chemother Pharmacol 77, 1039–1052 (2016). https://doi.org/10.1007/s00280-016-3018-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-016-3018-6

Keywords

Navigation