Skip to main content

Advertisement

Log in

The druggability of intracellular nucleotide-degrading enzymes

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Nucleotide metabolism is the target of a large number of anticancer drugs including antimetabolites and specific enzyme inhibitors. We review scientific findings that over the last 10–15 years have allowed the identification of several intracellular nucleotide-degrading enzymes as cancer drug targets, and discuss further potential therapeutic applications for Rcl, SAMHD1, MTH1 and cN-II. We believe that enzymes involved in nucleotide metabolism represent potent alternatives to conventional cancer chemotherapy targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  2. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M, Bensimon A, Zamir G, Shewach DS, Kerem B (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358

    Article  CAS  PubMed  Google Scholar 

  4. Spychala J (2000) Tumor-promoting functions of adenosine. Pharmacol Ther 87:161–173

    Article  CAS  PubMed  Google Scholar 

  5. Jordheim LP, Durantel D, Zoulim F, Dumontet C (2013) Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 12:447–464

    Article  CAS  PubMed  Google Scholar 

  6. Aye Y, Li M, Long MJ, Weiss RS (2015) Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34:2011–2021

    Article  CAS  PubMed  Google Scholar 

  7. Al-Kali A, Gandhi V, Ayoubi M, Keating M, Ravandi F (2010) Forodesine: review of preclinical and clinical data. Future Oncol 6:1211–1217

    Article  CAS  PubMed  Google Scholar 

  8. Wilson PM, Danenberg PV, Johnston PG, Lenz HJ, Ladner RD (2014) Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol 11:282–298

    Article  CAS  PubMed  Google Scholar 

  9. Serdjebi C, Milano G, Ciccolini J (2015) Role of cytidine deaminase in toxicity and efficacy of nucleosidic analogs. Expert Opin Drug Metab Toxicol 11:665–672

    Article  CAS  PubMed  Google Scholar 

  10. Bonnefoy N, Bastid J, Alberici G, Bensussan A, Eliaou JF (2015) CD39: a complementary target to immune checkpoints to counteract tumor-mediated immunosuppression. Oncoimmunology 4:e1003015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A (2013) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32:1743–1751

    Article  CAS  PubMed  Google Scholar 

  12. Beavis PA, Stagg J, Darcy PK, Smyth MJ (2012) CD73: a potent suppressor of antitumor immune responses. Trends Immunol 33:231–237

    Article  CAS  PubMed  Google Scholar 

  13. Zhang B (2010) CD73: a novel target for cancer immunotherapy. Cancer Res 70:6407–6411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Young A, Mittal D, Stagg J, Smyth MJ (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4:879–888

    Article  CAS  PubMed  Google Scholar 

  15. Zeller KI, Jegga AG, Aronow BJ, O’Donnell KA, Dang CV (2003) An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 4:R69

    Article  PubMed  PubMed Central  Google Scholar 

  16. Keller U, Nilsson JA, Maclean KH, Old JB, Cleveland JL (2005) Nfkb 1 is dispensable for Myc-induced lymphomagenesis. Oncogene 24:6231–6240

    Article  CAS  PubMed  Google Scholar 

  17. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP (2003) Skp2 regulates Myc protein stability and activity. Mol Cell 11:1177–1188

    Article  CAS  PubMed  Google Scholar 

  18. Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A, Dang CV (1997) Identification of putative c-Myc-responsive genes: characterization of Rcl, a novel growth-related gene. Mol Cell Biol 17:4967–4978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shin S, Bosc DG, Ingle JN, Spelsberg TC, Janknecht R (2008) Rcl is a novel ETV1/ER81 target gene upregulated in breast tumors. J Cell Biochem 105:866–874

    Article  CAS  PubMed  Google Scholar 

  20. Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM (2002) Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res 62:4427–4433

    CAS  PubMed  Google Scholar 

  21. Ghiorghi YK, Zeller KI, Dang CV, Kaminski PA (2007) The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5′-monophosphate N-glycosidase. J Biol Chem 282:8150–8156

    Article  CAS  PubMed  Google Scholar 

  22. Akiyama S, Furukawa T, Sumizawa T, Takebayashi Y, Nakajima Y, Shimaoka S, Haraguchi M (2004) The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression. Cancer Sci 95:851–857

    Article  CAS  PubMed  Google Scholar 

  23. Yang Y, Padilla A, Zhang C, Labesse G, Kaminski PA (2009) Structural characterization of the mammalian deoxynucleotide N-hydrolase Rcl and its stabilizing interactions with two inhibitors. J Mol Biol 394:435–447

    Article  CAS  PubMed  Google Scholar 

  24. Dupouy C, Zhang C, Padilla A, Pochet S, Kaminski PA (2010) Probing the active site of the deoxynucleotide N-hydrolase Rcl encoded by the rat gene c6orf108. J Biol Chem 285:41806–41814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Padilla A, Amiable C, Pochet S, Kaminski PA, Labesse G (2013) Structure of the oncoprotein Rcl bound to three nucleotide analogues. Acta Crystallogr D Biol Crystallogr 69:247–255

    Article  CAS  PubMed  Google Scholar 

  26. Amiable C, Pochet S, Padilla A, Labesse G, Kaminski PA (2013) N (6)-substituted AMPs inhibit mammalian deoxynucleotide N-hydrolase DNPH1. PLoS ONE 8:e80755

    Article  PubMed  PubMed Central  Google Scholar 

  27. Amiable C, Paoletti J, Haouz A, Padilla A, Labesse G, Kaminski PA, Pochet S (2014) 6-(Hetero) Arylpurine nucleotides as inhibitors of the oncogenic target DNPH1: synthesis, structural studies and cytotoxic activities. Eur J Med Chem 85:418–437

    Article  CAS  PubMed  Google Scholar 

  28. Li N, Zhang W, Cao X (2000) Identification of human homologue of mouse IFN-gamma induced protein from human dendritic cells. Immunol Lett 74:221–224

    Article  CAS  PubMed  Google Scholar 

  29. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–382

    Article  CAS  PubMed  Google Scholar 

  30. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Powell RD, Holland PJ, Hollis T, Perrino FW (2011) Aicardi–Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286:43596–43600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, Oojageer A, Anderson B, Pizzino A, Helman G, Abdel-Hamid MS, Abdel-Salam GM, Ackroyd S, Aeby A, Agosta G, Albin C, Allon-Shalev S, Arellano M, Ariaudo G, Aswani V, Babul-Hirji R, Baildam EM, Bahi-Buisson N, Bailey KM, Barnerias C, Barth M, Battini R, Beresford MW, Bernard G, Bianchi M, Billette de Villemeur T, Blair EM, Bloom M, Burlina AB, Carpanelli ML, Carvalho DR, Castro-Gago M, Cavallini A, Cereda C, Chandler KE, Chitayat DA, Collins AE, Sierra Corcoles C, Cordeiro NJ, Crichiutti G, Dabydeen L, Dale RC, D’Arrigo S, De Goede CG, De Laet C, DeWaele LM, Denzler I, Desguerre I, Devriendt K, Di Rocco M, Fahey MC, Fazzi E, Ferrie CD, Figueiredo A, Gener B, Goizet C, Gowrinathan NR, Gowrishankar K, Hanrahan D, Isidor B, Kara B, Khan N, King MD, Kirk EP, Kumar R, Lagae L, Landrieu P, Lauffer H, Laugel V, La Piana R, Lim MJ, Lin JP, Linnankivi T, Mackay MT, Marom DR, Marques Lourenco C, McKee SA, Moroni I, Morton JE, Moutard ML, Murray K, Nabbout R, Nampoothiri S, Nunez-Enamorado N, Oades PJ, Olivieri I, Ostergaard JR, Perez-Duenas B, Prendiville JS, Ramesh V, Rasmussen M, Regal L, Ricci F, Rio M, Rodriguez D, Roubertie A, Salvatici E, Segers KA, Sinha GP, Soler D, Spiegel R, Stodberg TI, Straussberg R, Swoboda KJ, Suri M, Tacke U, Tan TY, te Water Naude J, Wee Teik K, Thomas MM, Till M, Tonduti D, Valente EM, Van Coster RN, van der Knaap MS, Vassallo G, Vijzelaar R, Vogt J, Wallace GB, Wassmer E, Webb HJ, Whitehouse WP, Whitney RN, Zaki MS, Zuberi SM, Livingston JH, Rozenberg F, Lebon P, Vanderver A, Orcesi S, Rice GI (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A 167A:296–312

    Article  PubMed  CAS  Google Scholar 

  34. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi–Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ji X, Wu Y, Yan J, Mehrens J, Yang H, DeLucia M, Hao C, Gronenborn AM, Skowronski J, Ahn J, Xiong Y (2013) Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct Mol Biol 20:1304–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan J, Kaur S, DeLucia M, Hao C, Mehrens J, Wang C, Golczak M, Palczewski K, Gronenborn AM, Ahn J, Skowronski J (2013) Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection. J Biol Chem 288:10406–10417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu C, Gao W, Zhao K, Qin X, Zhang Y, Peng X, Zhang L, Dong Y, Zhang W, Li P, Wei W, Gong Y, Yu XF (2013) Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase. Nat Commun 4:2722

    PubMed  Google Scholar 

  38. Miazzi C, Ferraro P, Pontarin G, Rampazzo C, Reichard P, Bianchi V (2014) Allosteric regulation of the human and mouse deoxyribonucleotide triphosphohydrolase sterile alpha-motif/histidine-aspartate domain-containing protein 1 (SAMHD1). J Biol Chem 289:18339–18346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amie SM, Bambara RA, Kim B (2013) GTP is the primary activator of the anti-HIV restriction factor SAMHD1. J Biol Chem 288:25001–25006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu CF, Wei W, Peng X, Dong YH, Gong Y, Yu XF (2015) The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP. Acta Crystallogr D Biol Crystallogr 71:516–524

    Article  CAS  PubMed  Google Scholar 

  41. Seamon KJ, Hansen EC, Kadina AP, Kashemirov BA, McKenna CE, Bumpus NN, Stivers JT (2014) Small molecule inhibition of SAMHD1 dNTPase by tetramer destabilization. J Am Chem Soc 136:9822–9825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Amie SM, Daly MB, Noble E, Schinazi RF, Bambara RA, Kim B (2013) Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels. J Biol Chem 288:20683–20691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim SY, Seo D, Kim J, White TE, Brandariz-Nunez A, Diaz-Griffero F, Yun CH, Hollenbaugh JA, Kim B, Baek D, Ahn K (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20:936–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tungler V, Staroske W, Kind B, Dobrick M, Kretschmer S, Schmidt F, Krug C, Lorenz M, Chara O, Schwille P, Lee-Kirsch MA (2013) Single-stranded nucleic acids promote SAMHD1 complex formation. J Mol Med (Berl) 91:759–770

    Article  CAS  Google Scholar 

  45. Beloglazova N, Flick R, Tchigvintsev A, Brown G, Popovic A, Nocek B, Yakunin AF (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi–Goutieres syndrome and HIV-1 restriction. J Biol Chem 288:8101–8110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goncalves A, Karayel E, Rice GI, Bennett KL, Crow YJ, Superti-Furga G, Burckstummer T (2012) SAMHD1 is a nucleic-acid binding protein that is mislocalized due to Aicardi–Goutieres syndrome-associated mutations. Hum Mutat 33:1116–1122

    Article  CAS  PubMed  Google Scholar 

  47. Seamon KJ, Sun Z, Shlyakhtenko LS, Lyubchenko YL, Stivers JT (2015) SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity. Nucleic Acids Res 43:6486–6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi J, Ryoo J, Oh C, Hwang S, Ahn K (2015) SAMHD1 specifically restricts retroviruses through its RNase activity. Retrovirology 12:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Franzolin E, Salata C, Bianchi V, Rampazzo C (2015) The dNTP triphosphohydrolase activity of SAMHD1 contributes to the mitochondrial DNA depletion associated with genetic deficiency of deoxyguanosine kinase. J Biol Chem 290:25986–25996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Franzolin E, Pontarin G, Rampazzo C, Miazzi C, Ferraro P, Palumbo E, Reichard P, Bianchi V (2013) The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA 110:14272–14277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rehwinkel J, Maelfait J, Bridgeman A, Rigby R, Hayward B, Liberatore RA, Bieniasz PD, Towers GJ, Moita LF, Crow YJ, Bonthron DT, Reis e Sousa C (2013) SAMHD1-dependent retroviral control and escape in mice. EMBO J 32:2454–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Munoz E, Torres-Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menendez-Arias L, Clotet B, Keppler OT, Marti R, Posas F, Ballana E, Este JA (2014) Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. J Immunol 193:1988–1997

    Article  CAS  PubMed  Google Scholar 

  53. Yan J, Hao C, DeLucia M, Swanson S, Florens L, Washburn MP, Ahn J, Skowronski J (2015) CyclinA2-cyclin-dependent kinase regulates SAMHD1 protein phosphohydrolase domain. J Biol Chem 290:13279–13292

    Article  CAS  PubMed  Google Scholar 

  54. White TE, Brandariz-Nunez A, Valle-Casuso JC, Amie S, Nguyen LA, Kim B, Tuzova M, Diaz-Griffero F (2013) The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe 13:441–451

    Article  CAS  PubMed  Google Scholar 

  55. Welbourn S, Dutta SM, Semmes OJ, Strebel K (2013) Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1. J Virol 87:11516–11524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang C, Ji X, Wu L, Xiong Y (2015) Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of T592. J Biol Chem 290:26352–26359

    Article  CAS  PubMed  Google Scholar 

  57. Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A (2011) Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res 39:1360–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clifford R, Louis T, Robbe P, Ackroyd S, Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, Judde JG, Rotger M, Telenti A, Lin YL, Pasero P, Maelfait J, Titsias M, Cohen DR, Henderson SJ, Ross MT, Bentley D, Hillmen P, Pettitt A, Rehwinkel J, Knight SJ, Taylor JC, Crow YJ, Benkirane M, Schuh A (2014) SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage. Blood 123:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT (2014) SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun 455:229–233

    Article  CAS  PubMed  Google Scholar 

  60. Welbourn S, Miyagi E, White TE, Diaz-Griffero F, Strebel K (2012) Identification and characterization of naturally occurring splice variants of SAMHD1. Retrovirology 9:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi Y, Lv G, Chu Z, Piao L, Liu X, Wang T, Jiang Y, Zhang P (2014) Identification of natural splice variants of SAMHD1 in virus-infected HCC. Oncol Rep 31:687–692

    PubMed  Google Scholar 

  62. Seamon KJ, Stivers JT (2015) A high-throughput enzyme-coupled assay for SAMHD1 dNTPase. J Biomol Screen 20:801–809

    Article  CAS  PubMed  Google Scholar 

  63. Nakabeppu Y (2001) Molecular genetics and structural biology of human MutT homolog, MTH1. Mutat Res 477:59–70

    Article  CAS  PubMed  Google Scholar 

  64. Takagi Y, Setoyama D, Ito R, Kamiya H, Yamagata Y, Sekiguchi M (2012) Human MTH3 (NUDT18) protein hydrolyzes oxidized forms of guanosine and deoxyguanosine diphosphates: comparison with MTH1 and MTH2. J Biol Chem 287:21541–21549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bialkowski K, Kasprzak KS (2003) Inhibition of 8-oxo-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity of the antimutagenic human MTH1 protein by nucleoside 5′-diphosphates. Free Radic Biol Med 35:595–602

    Article  CAS  PubMed  Google Scholar 

  66. Yoshimura D, Sakumi K, Ohno M, Sakai Y, Furuichi M, Iwai S, Nakabeppu Y (2003) An oxidized purine nucleoside triphosphatase, MTH1, suppresses cell death caused by oxidative stress. J Biol Chem 278:37965–37973

    Article  CAS  PubMed  Google Scholar 

  67. Ichikawa J, Tsuchimoto D, Oka S, Ohno M, Furuichi M, Sakumi K, Nakabeppu Y (2008) Oxidation of mitochondrial deoxynucleotide pools by exposure to sodium nitroprusside induces cell death. DNA Repair (Amst) 7:418–430

    Article  CAS  Google Scholar 

  68. Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, Kawate H, Nakao K, Nakamura K, Ide F, Kura S, Nakabeppu Y, Katsuki M, Ishikawa T, Sekiguchi M (2001) Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA 98:11456–11461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hori M, Satou K, Harashima H, Kamiya H (2010) Suppression of mutagenesis by 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (7,8-dihydro-8-oxo-2′-deoxyguanosine 5′-triphosphate) by human MTH1, MTH2, and NUDT5. Free Radic Biol Med 48:1197–1201

    Article  CAS  PubMed  Google Scholar 

  70. Rai P, Young JJ, Burton DG, Giribaldi MG, Onder TT, Weinberg RA (2011) Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene 30:1489–1496

    Article  CAS  PubMed  Google Scholar 

  71. Patel A, Burton DG, Halvorsen K, Balkan W, Reiner T, Perez-Stable C, Cohen A, Munoz A, Giribaldi MG, Singh S, Robbins DJ, Nguyen DM, Rai P (2015) MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene 34:2586–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cho WC, Chow AS, Au JS (2011) MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 8:125–131

    Article  CAS  PubMed  Google Scholar 

  73. Nakabeppu Y, Kajitani K, Sakamoto K, Yamaguchi H, Tsuchimoto D (2006) MTH1, an oxidized purine nucleoside triphosphatase, prevents the cytotoxicity and neurotoxicity of oxidized purine nucleotides. DNA Repair (Amst) 5:761–772

    Article  CAS  Google Scholar 

  74. Mikkelsen L, Bialkowski K, Risom L, Lohr M, Loft S, Moller P (2009) Aging and defense against generation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in DNA. Free Radic Biol Med 47:608–615

    Article  CAS  PubMed  Google Scholar 

  75. Sakai Y, Furuichi M, Takahashi M, Mishima M, Iwai S, Shirakawa M, Nakabeppu Y (2002) A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1. J Biol Chem 277:8579–8587

    Article  CAS  PubMed  Google Scholar 

  76. Kamiya H, Yakushiji H, Dugue L, Tanimoto M, Pochet S, Nakabeppu Y, Harashima H (2004) Probing the substrate recognition mechanism of the human MTH1 protein by nucleotide analogs. J Mol Biol 336:843–850

    Article  CAS  PubMed  Google Scholar 

  77. Fujikawa K, Kamiya H, Yakushiji H, Nakabeppu Y, Kasai H (2001) Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res 29:449–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mishima M, Sakai Y, Itoh N, Kamiya H, Furuichi M, Takahashi M, Yamagata Y, Iwai S, Nakabeppu Y, Shirakawa M (2004) Structure of human MTH1, a Nudix family hydrolase that selectively degrades oxidized purine nucleoside triphosphates. J Biol Chem 279:33806–33815

    Article  CAS  PubMed  Google Scholar 

  79. Nakamura T, Kitaguchi Y, Miyazawa M, Kamiya H, Toma S, Ikemizu S, Shirakawa M, Nakabeppu Y, Yamagata Y (2006) Crystallization and preliminary X-ray analysis of human MTH1 complexed with two oxidized nucleotides, 8-oxo-dGMP and 2-oxo-dATP. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1283–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kamiya H, Cadena-Amaro C, Dugue L, Yakushiji H, Minakawa N, Matsuda A, Pochet S, Nakabeppu Y, Harashima H (2006) Recognition of nucleotide analogs containing the 7,8-dihydro-8-oxo structure by the human MTH1 protein. J Biochem 140:843–849

    Article  CAS  PubMed  Google Scholar 

  81. Koga Y, Inazato M, Nakamura T, Hashikawa C, Chirifu M, Michi A, Yamashita T, Toma S, Kuniyasu A, Ikemizu S, Nakabeppu Y, Yamagata Y (2013) Crystallization and preliminary X-ray analysis of human MTH1 with a homogeneous N-terminus. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:45–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Svensson LM, Jemth AS, Desroses M, Loseva O, Helleday T, Hogbom M, Stenmark P (2011) Crystal structure of human MTH1 and the 8-oxo-dGMP product complex. FEBS Lett 585:2617–2621

    Article  CAS  PubMed  Google Scholar 

  83. Smits VA, Gillespie DA (2014) Cancer therapy. Targeting the poison within. Cell Cycle 13:2330–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Helleday T (2014) Cancer phenotypic lethality, exemplified by the non-essential MTH1 enzyme being required for cancer survival. Ann Oncol 25:1253–1255

    Article  CAS  PubMed  Google Scholar 

  85. Huber KV, Salah E, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Gokturk C, Sanjiv K, Stromberg K, Pham T, Berglund UW, Colinge J, Bennett KL, Loizou JI, Helleday T, Knapp S, Superti-Furga G (2014) Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508:222–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gad H, Koolmeister T, Jemth AS, Eshtad S, Jacques SA, Strom CE, Svensson LM, Schultz N, Lundback T, Einarsdottir BO, Saleh A, Gokturk C, Baranczewski P, Svensson R, Berntsson RP, Gustafsson R, Stromberg K, Sanjiv K, Jacques-Cordonnier MC, Desroses M, Gustavsson AL, Olofsson R, Johansson F, Homan EJ, Loseva O, Brautigam L, Johansson L, Hoglund A, Hagenkort A, Pham T, Altun M, Gaugaz FZ, Vikingsson S, Evers B, Henriksson M, Vallin KS, Wallner OA, Hammarstrom LG, Wiita E, Almlof I, Kalderen C, Axelsson H, Djureinovic T, Puigvert JC, Haggblad M, Jeppsson F, Martens U, Lundin C, Lundgren B, Granelli I, Jensen AJ, Artursson P, Nilsson JA, Stenmark P, Scobie M, Berglund UW, Helleday T (2014) MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508:215–221

    Article  CAS  PubMed  Google Scholar 

  87. Streib M, Kraling K, Richter K, Xie X, Steuber H, Meggers E (2014) An organometallic inhibitor for the human repair enzyme 7,8-dihydro-8-oxoguanosine triphosphatase. Angew Chem Int Ed Engl 53:305–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tozzi MG, Pesi R, Allegrini S (2013) On the physiological role of cytosolic 5′-nucleotidase II (cN-II): pathological and therapeutical implications. Curr Med Chem 20:4285–4291

    Article  CAS  PubMed  Google Scholar 

  89. Baiocchi C, Pesi R, Camici M, Itoh R, Grazi Tozzi M (1996) Mechanism of the reaction catalysed by cytosolic 5′-nucleotidase/phosphotransferase: formation of a phosphorylated intermediate. Biochem J 317(Pt 3):797–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jordheim LP, Chaloin L (2013) Therapeutic perspectives for cN-II in cancer. Curr Med Chem 20:4292–4303

    Article  CAS  PubMed  Google Scholar 

  91. Ipata PL, Balestri F (2013) The functional logic of cytosolic 5′-nucleotidases. Curr Med Chem 20:4205–4216

    Article  CAS  PubMed  Google Scholar 

  92. Wallden K, Nordlund P (2011) Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5′-nucleotidase II. J Mol Biol 408:684–696

    Article  CAS  PubMed  Google Scholar 

  93. Allegrini S, Scaloni A, Careddu MG, Cuccu G, D’Ambrosio C, Pesi R, Camici M, Ferrara L, Tozzi MG (2004) Mechanistic studies on bovine cytosolic 5′-nucleotidase II, an enzyme belonging to the HAD superfamily. Eur J Biochem 271:4881–4891

    Article  CAS  PubMed  Google Scholar 

  94. Gazziola C, Moras M, Ferraro P, Gallinaro L, Verin R, Rampazzo C, Reichard P, Bianchi V (1999) Induction of human high K(M) 5′-nucleotidase in cultured 293 cells. Exp Cell Res 253:474–482

    Article  CAS  PubMed  Google Scholar 

  95. Rampazzo C, Gazziola C, Ferraro P, Gallinaro L, Johansson M, Reichard P, Bianchi V (1999) Human high-Km 5′-nucleotidase effects of overexpression of the cloned cDNA in cultured human cells. Eur J Biochem 261:689–697

    Article  CAS  PubMed  Google Scholar 

  96. Galmarini CM, Graham K, Thomas X, Calvo F, Rousselot P, El Jafaari A, Cros E, Mackey JR, Dumontet C (2001) Expression of high Km 5′-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. Blood 98:1922–1926

    Article  CAS  PubMed  Google Scholar 

  97. Galmarini CM, Cros E, Thomas X, Jordheim L, Dumontet C (2005) The prognostic value of cN-II and cN-III enzymes in adult acute myeloid leukemia. Haematologica 90:1699–1701

    CAS  PubMed  Google Scholar 

  98. Mazzon C, Rampazzo C, Scaini MC, Gallinaro L, Karlsson A, Meier C, Balzarini J, Reichard P, Bianchi V (2003) Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy. Biochem Pharmacol 66:471–479

    Article  CAS  PubMed  Google Scholar 

  99. Tzoneva G, Perez-Garcia A, Carpenter Z, Khiabanian H, Tosello V, Allegretta M, Paietta E, Racevskis J, Rowe JM, Tallman MS, Paganin M, Basso G, Hof J, Kirschner-Schwabe R, Palomero T, Rabadan R, Ferrando A (2013) Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL. Nat Med 19:368–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Meyer JA, Wang J, Hogan LE, Yang JJ, Dandekar S, Patel JP, Tang Z, Zumbo P, Li S, Zavadil J, Levine RL, Cardozo T, Hunger SP, Raetz EA, Evans WE, Morrison DJ, Mason CE, Carroll WL (2013) Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet 45:290–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jordheim LP, Puy JY, Cros-Perrial E, Peyrottes S, Lefebvre I, Perigaud C, Dumontet C (2015) Determination of the enzymatic activity of cytosolic 5′-nucleotidase cN-II in cancer cells: development of a simple analytical method and related cell line models. Anal Bioanal Chem 407:5747–5758

    Article  CAS  PubMed  Google Scholar 

  102. Cividini F, Cros-Perrial E, Pesi R, Machon C, Allegrini S, Camici M, Dumontet C, Jordheim LP, Tozzi MG (2015) Cell proliferation and drug sensitivity of human glioblastoma cells are altered by the stable modulation of cytosolic 5′-nucleotidase II. Int J Biochem Cell Biol 65:222–229

    Article  CAS  PubMed  Google Scholar 

  103. Allegrini S, Filoni DN, Galli A, Collavoli A, Pesi R, Camici M, Tozzi MG (2013) Expression of bovine cytosolic 5′-nucleotidase (cN-II) in yeast: nucleotide pools disturbance and its consequences on growth and homologous recombination. PLoS ONE 8:e63914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Careddu MG, Allegrini S, Pesi R, Camici M, Garcia-Gil M, Tozzi MG (2008) Knockdown of cytosolic 5′-nucleotidase II (cN-II) reveals that its activity is essential for survival in astrocytoma cells. Biochim Biophys Acta 1783:1529–1535

    Article  CAS  PubMed  Google Scholar 

  105. Meurillon M, Marton Z, Hospital A, Jordheim LP, Bejaud J, Lionne C, Dumontet C, Perigaud C, Chaloin L, Peyrottes S (2014) Structure-activity relationships of beta-hydroxyphosphonate nucleoside analogues as cytosolic 5′-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies. Eur J Med Chem 77C:18–37

    Article  CAS  Google Scholar 

  106. Gallier F, Lallemand P, Meurillon M, Jordheim LP, Dumontet C, Perigaud C, Lionne C, Peyrottes S, Chaloin L (2011) Structural insights into the inhibition of cytosolic 5′-nucleotidase II (cN-II) by ribonucleoside 5′-monophosphate analogues. PLoS Comput Biol 7:e1002295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jordheim LP, Marton Z, Rhimi M, Cros-Perrial E, Lionne C, Peyrottes S, Dumontet C, Aghajari N, Chaloin L (2013) Identification and characterization of inhibitors of cytoplasmic 5′-nucleotidase cN-II issued from virtual screening. Biochem Pharmacol 85:497–506

    Article  CAS  PubMed  Google Scholar 

  108. Cividini F, Pesi R, Chaloin L, Allegrini S, Camici M, Cros-Perrial E, Dumontet C, Jordheim LP, Tozzi MG (2015) The purine analog fludarabine acts as a cytosolic 5′-nucleotidase II inhibitor. Biochem Pharmacol 94:63–68

    Article  CAS  PubMed  Google Scholar 

  109. Jordheim LP, Cros E, Galmarini CM, Dumontet C, Bretonnet AS, Krimm I, Lancelin JM, Gagnieu MC (2006) F-ara-AMP is a substrate of cytoplasmic 5′-nucleotidase II (cN-II): HPLC and NMR studies of enzymatic dephosphorylation. Nucleosides Nucleotides Nucleic Acids 25:289–297

    Article  CAS  PubMed  Google Scholar 

  110. Corson TW, Cavga H, Aberle N, Crews CM (2011) Triptolide directly inhibits dCTP pyrophosphatase. ChemBioChem 12:1767–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Requena CE, Perez-Moreno G, Ruiz-Perez LM, Vidal AE, Gonzalez-Pacanowska D (2014) The NTP pyrophosphatase DCTPP1 contributes to the homoeostasis and cleansing of the dNTP pool in human cells. Biochem J 459:171–180

    Article  CAS  PubMed  Google Scholar 

  112. Song FF, Xia LL, Ji P, Tang YB, Huang ZM, Zhu L, Zhang J, Wang JQ, Zhao GP, Ge HL, Zhang Y, Wang Y (2015) Human dCTP pyrophosphatase 1 promotes breast cancer cell growth and stemness through the modulation on 5-methyl-dCTP metabolism and global hypomethylation. Oncogenesis 4:e159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang Y, Ye WY, Wang JQ, Wang SJ, Ji P, Zhou GY, Zhao GP, Ge HL, Wang Y (2013) dCTP pyrophosphohydrase exhibits nucleic accumulation in multiple carcinomas. Eur J Histochem 57:e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kamiya H, Hori M, Arimori T, Sekiguchi M, Yamagata Y, Harashima H (2009) NUDT5 hydrolyzes oxidized deoxyribonucleoside diphosphates with broad substrate specificity. DNA Repair (Amst) 8:1250–1254

    Article  CAS  Google Scholar 

  115. Arimori T, Tamaoki H, Nakamura T, Kamiya H, Ikemizu S, Takagi Y, Ishibashi T, Harashima H, Sekiguchi M, Yamagata Y (2011) Diverse substrate recognition and hydrolysis mechanisms of human NUDT5. Nucleic Acids Res 39:8972–8983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zha M, Guo Q, Zhang Y, Yu B, Ou Y, Zhong C, Ding J (2008) Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies. J Mol Biol 379:568–578

    Article  CAS  PubMed  Google Scholar 

  117. Ito R, Sekiguchi M, Setoyama D, Nakatsu Y, Yamagata Y, Hayakawa H (2011) Cleavage of oxidized guanine nucleotide and ADP sugar by human NUDT5 protein. J Biochem 149:731–738

    Article  CAS  PubMed  Google Scholar 

  118. Zhang LQ, Dai DP, Gan W, Takagi Y, Hayakawa H, Sekiguchi M, Cai JP (2012) Lowered nudix type 5 (NUDT5) expression leads to cell cycle retardation in HeLa cells. Mol Cell Biochem 363:377–384

    Article  CAS  PubMed  Google Scholar 

  119. Abolhassani N, Iyama T, Tsuchimoto D, Sakumi K, Ohno M, Behmanesh M, Nakabeppu Y (2010) NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Res 38:2891–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Iyama T, Abolhassani N, Tsuchimoto D, Nonaka M, Nakabeppu Y (2010) NUDT16 is a (deoxy)inosine diphosphatase, and its deficiency induces accumulation of single-strand breaks in nuclear DNA and growth arrest. Nucleic Acids Res 38:4834–4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tresaugues L, Lundback T, Welin M, Flodin S, Nyman T, Silvander C, Graslund S, Nordlund P (2015) Structural basis for the specificity of human NUDT16 and its regulation by inosine monophosphate. PLoS ONE 10:e0131507

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yang SK, Hong M, Baek J, Choi H, Zhao W, Jung Y, Haritunians T, Ye BD, Kim KJ, Park SH, Park SK, Yang DH, Dubinsky M, Lee I, McGovern DP, Liu J, Song K (2014) A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46:1017–1020

    Article  CAS  PubMed  Google Scholar 

  123. Tanaka Y, Kato M, Hasegawa D, Urayama KY, Nakadate H, Kondoh K, Nakamura K, Koh K, Komiyama T, Manabe A (2015) Susceptibility to 6-MP toxicity conferred by a NUDT15 variant in Japanese children with acute lymphoblastic leukaemia. Br J Haematol 171:109–115

    Article  CAS  PubMed  Google Scholar 

  124. Yang JJ, Landier W, Yang W, Liu C, Hageman L, Cheng C, Pei D, Chen Y, Crews KR, Kornegay N, Wong FL, Evans WE, Pui CH, Bhatia S, Relling MV (2015) Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. J Clin Oncol 33:1235–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shen BW, Perraud AL, Scharenberg A, Stoddard BL (2003) The crystal structure and mutational analysis of human NUDT9. J Mol Biol 332:385–398

    Article  CAS  PubMed  Google Scholar 

  126. Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411:595–599

    Article  CAS  PubMed  Google Scholar 

  127. Perraud AL, Shen B, Dunn CA, Rippe K, Smith MK, Bessman MJ, Stoddard BL, Scharenberg AM (2003) NUDT9, a member of the Nudix hydrolase family, is an evolutionarily conserved mitochondrial ADP-ribose pyrophosphatase. J Biol Chem 278:1794–1801

    Article  CAS  PubMed  Google Scholar 

  128. Amici A, Magni G (2002) Human erythrocyte pyrimidine 5′-nucleotidase, PN-I. Arch Biochem Biophys 397:184–190

    Article  CAS  PubMed  Google Scholar 

  129. Li L, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S, Hildebrandt M, Ames M, Schaid D, Wang L (2008) Gemcitabine and cytosine arabinoside cytotoxicity: association with lymphoblastoid cell expression. Cancer Res 68:7050–7058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cividini F, Tozzi MG, Galli A, Pesi R, Camici M, Dumontet C, Jordheim LP, Allegrini S (2015) Cytosolic 5′-nucleotidase II interacts with the leucin rich repeat of NLR family member Ipaf. PLoS ONE 10:e0121525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

L. P. J. received funding from ARC Fondation and Olav Raagholt og Gerd Meidel Raagholts stiftelse for forskning. CD received support from INCa-DGOS-4664.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Petter Jordheim.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rampazzo, C., Tozzi, M.G., Dumontet, C. et al. The druggability of intracellular nucleotide-degrading enzymes. Cancer Chemother Pharmacol 77, 883–893 (2016). https://doi.org/10.1007/s00280-015-2921-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2921-6

Keywords

Navigation