Skip to main content

Advertisement

Log in

Functional polymorphisms of ITGB1 are associated with clinical outcome of Chinese patients with resected colorectal cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Integrin β1 (ITGB1) has been recognized to play a major role in tumor growth, invasion and metastasis. However, effects of single-nucleotide polymorphisms (SNPs) in ITGB1 gene on the prognosis of patients with colorectal cancer (CRC) have not been reported.

Methods

A total of 372 patients with resected colorectal adenocarcinoma were enrolled in our study. Three functional SNPs (rs2230395, rs1187075 and rs1187076) in ITGB1 were selected and genotyped using the Sequenom iPLEX genotyping system.

Results

We identified two SNPs (rs2230395 and rs1187075) in ITGB1 gene to be significantly associated with CRC overall survival (OS). Compared with the homozygous wild-type (AA) and heterozygous variant (AC), rs2230395 homozygous variant (CC) conferred a 1.55-fold (95 % CI 1.00–2.41, P = 0.049) increased risk of death. Similar result was obtained for homozygous variant (AA) in rs1187075 with a 1.62-fold (95 % CI 1.08–2.42, P = 0.020). In stratified analysis, this association in rs2230395 remained to be significant in patients receiving chemotherapy, but not in those without chemotherapy. We further evaluated the effects of chemotherapy on CRC survival in subgroups stratified by rs2230395 and rs1187075 genotypes. We found that chemotherapy resulted in a significantly better OS in patients with the homozygous wild-type (WW) or heterozygous variant (WV) genotype in both rs2230395 and rs1187075 when compared with patients with homozygous variant (VV) genotype.

Conclusions

Our data suggest that ITGB1 SNPs might be a prognostic biomarker for CRC patients, especially in those receiving chemotherapy. Our findings warrant validation in larger independent populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cox D, Brennan M, Moran N (2010) Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov 9:804–820

    Article  CAS  PubMed  Google Scholar 

  2. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  3. Guo L, Zhang F, Cai Y, Liu T (2009) Expression profiling of integrins in lung cancer cells. Pathol Res Pract 205:847–853

    Article  CAS  PubMed  Google Scholar 

  4. Murant SJ, Handley J, Stower M, Reid N, Cussenot O, Maitland NJ (1997) Co-ordinated changes in expression of cell adhesion molecules in prostate cancer. Eur J Cancer 33:263–271

    Article  CAS  PubMed  Google Scholar 

  5. Davidson B, Goldberg I, Reich R, Tell L, Dong HP, Trope CG, Risberg B, Kopolovic J (2003) AlphaV- and beta1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol 90:248–257

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Fournier MV, Ware JL, Bissell MJ, Yacoub A, Zehner ZE (2009) Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Cancer Ther 8:499–508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ, Bissell MJ (2006) Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res 66:1526–1535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Huck L, Pontier SM, Zuo DM, Muller WJ (2010) Beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression. Proc Natl Acad Sci USA 107:15559–15564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kren A, Baeriswyl V, Lehembre F, Wunderlin C, Strittmatter K, Antoniadis H, Fassler R, Cavallaro U, Christofori G (2007) Increased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. EMBO J 26:2832–2842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. dos Santos PB, Zanetti JS, Ribeiro-Silva A, Beltrao EI (2012) Beta 1 integrin predicts survival in breast cancer: a clinicopathological and immunohistochemical study. Diagn Pathol 7:104

    Article  PubMed Central  PubMed  Google Scholar 

  11. Yao ES, Zhang H, Chen YY, Lee B, Chew K, Moore D, Park C (2007) Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res 67:659–664

    Article  CAS  PubMed  Google Scholar 

  12. Zhang PF, Zeng GQ, Yi LZ, Liu JP, Wan XX, Qu JQ, Li JH, Li C, Tang CE, Hu R, Ye X, Chen Y, Chen ZC, Xiao ZQ (2013) Identification of integrin beta1 as a prognostic biomarker for human lung adenocarcinoma using 2D-LC-MS/MS combined with iTRAQ technology. Oncol Rep 30:341–349

    CAS  PubMed  Google Scholar 

  13. Pontes-Junior J, Reis ST, Bernardes FS, Oliveira LC, Barros EA, Dall’Oglio MF, Timosczuk LM, Ribeiro-Filho LA, Srougi M, Leite KR (2013) Correlation between beta1 integrin expression and prognosis in clinically localized prostate cancer. Int Braz J Urol 39:335–342. Discussion 343

    Article  PubMed  Google Scholar 

  14. Bottger TC, Maschek H, Lobo M, Gottwohl RG, Brenner W, Junginger T (1999) Prognostic value of immunohistochemical expression of beta-1 integrin in pancreatic carcinoma. Oncology 56:308–313

    Article  CAS  PubMed  Google Scholar 

  15. Howe GA, Addison CL (2012) Beta1 integrin: an emerging player in the modulation of tumorigenesis and response to therapy. Cell Adh Migr 6:71–77

    Article  PubMed Central  PubMed  Google Scholar 

  16. Siegel R, Desantis C, Jemal A (2014) Colorectal cancer statistics. CA Cancer J Clin 64:104–117

    Article  PubMed  Google Scholar 

  17. Shin A, Jung KW, Won YJ (2013) Colorectal cancer mortality in Hong Kong of China, Japan, South Korea, and Singapore. World J Gastroenterol 19:979–983

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zhou F, He X, Liu H, Zhu Y, Jin T, Chen C, Qu F, Li Y, Bao G, Chen Z, Xing J (2011) Functional polymorphisms of circadian positive feedback regulation genes and clinical outcome of Chinese patients with resected colorectal cancer. Cancer 118:937–946

    Article  PubMed  Google Scholar 

  19. Xing J, Wan S, Zhou F, Qu F, Li B, Myers RE, Fu X, Palazzo JP, He X, Chen Z, Yang H (2011) Genetic polymorphisms in pre-microRNA genes as prognostic markers of colorectal cancer. Cancer Epidemiol Biomarkers Prev 21:217–227

    Article  PubMed Central  PubMed  Google Scholar 

  20. Dai J, Wan S, Zhou F, Myers RE, Guo X, Li B, Fu X, Palazzo JP, Dou K, Yang H, Xing J (2012) Genetic polymorphism in a VEGF-independent angiogenesis gene ANGPT1 and overall survival of colorectal cancer patients after surgical resection. PLoS One 7:e34758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Wang Y, Long L, Li T, Zhou Y, Jiang L, Zeng X, Dan H, Liao G, Luo G, Wang H, Zhou M, Xu Y, Li J, Chen Q (2014) Polymorphisms of microRNA-binding sites in integrin genes are associated with oral squamous cell carcinoma susceptibility and progression. Tohoku J Exp Med 233:33–41

    Article  CAS  PubMed  Google Scholar 

  22. Eun YG, Kim SK, Chung JH, Kwon KH (2013) Association study of integrins beta 1 and beta 2 gene polymorphism and papillary thyroid cancer. Am J Surg 205:631–635

    Article  CAS  PubMed  Google Scholar 

  23. Chow S-C, Wang H, Shao J (2003) Sample size calculations in clinical research. Biostatistics, vol 11. CRC Press

  24. Fan LF, Dong WG, Jiang CQ, Xia D, Liao F, Yu QF (2009) Expression of putative stem cell genes Musashi-1 and beta1-integrin in human colorectal adenomas and adenocarcinomas. Int J Colorectal Dis 25:17–23

    Article  PubMed  Google Scholar 

  25. Fujita S, Watanabe M, Kubota T, Teramoto T, Kitajima M (1995) Alteration of expression in integrin beta 1-subunit correlates with invasion and metastasis in colorectal cancer. Cancer Lett 91:145–149

    Article  CAS  PubMed  Google Scholar 

  26. Song J, Zhang J, Wang J, Cao Z, Guo X, Dong W. Beta1 integrin modulates tumor growth and apoptosis of human colorectal cancer. Oncol Rep 32:302–308

  27. Fujita S, Suzuki H, Kinoshita M, Hirohashi S (1992) Inhibition of cell attachment, invasion and metastasis of human carcinoma cells by anti-integrin beta 1 subunit antibody. Jpn J Cancer Res 83:1317–1326

    Article  CAS  PubMed  Google Scholar 

  28. Hughes PE, Renshaw MW, Pfaff M, Forsyth J, Keivens VM, Schwartz MA, Ginsberg MH (1997) Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 88:521–530

    Article  CAS  PubMed  Google Scholar 

  29. Schlaepfer DD, Hunter T (1997) Focal adhesion kinase overexpression enhances ras-dependent integrin signaling to ERK2/mitogen-activated protein kinase through interactions with and activation of c-Src. J Biol Chem 272:13189–13195

    Article  CAS  PubMed  Google Scholar 

  30. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS (1997) Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 17:4406–4418

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Fornaro M, Languino LR (1997) Alternatively spliced variants: a new view of the integrin cytoplasmic domain. Matrix Biol 16:185–193

    Article  CAS  PubMed  Google Scholar 

  32. Fornaro M, Tallini G, Zheng DQ, Flanagan WM, Manzotti M, Languino LR (1999) p27(kip1) acts as a downstream effector of and is coexpressed with the beta1C integrin in prostatic adenocarcinoma. J Clin Invest 103:321–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Goel HL, Li J, Kogan S, Languino LR (2008) Integrins in prostate cancer progression. Endocr Relat Cancer 15:657–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wittig BM, Goebel R, Weg-Remers S, Pistorius G, Feifel G, Zeitz M, Stallmach A (2001) Stage-specific alternative splicing of CD44 and alpha 6 beta 1 integrin in colorectal tumorigenesis. Exp Mol Pathol 70:96–102

    Article  CAS  PubMed  Google Scholar 

  35. Hudson TJ (2003) Wanted: regulatory SNPs. Nat Genet 33:439–440

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Tomso DJ, Liu X, Bell DA (2005) Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes. Toxicol Appl Pharmacol 207:84–90

    Article  PubMed  Google Scholar 

  37. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419

    Article  CAS  PubMed  Google Scholar 

  38. Hazlehurst LA, Valkov N, Wisner L, Storey JA, Boulware D, Sullivan DM, Dalton WS (2001) Reduction in drug-induced DNA double-strand breaks associated with beta1 integrin-mediated adhesion correlates with drug resistance in U937 cells. Blood 98:1897–1903

    Article  CAS  PubMed  Google Scholar 

  39. Taylor ST, Hickman JA, Dive C (2000) Epigenetic determinants of resistance to etoposide regulation of Bcl-X(L) and Bax by tumor microenvironmental factors. J Natl Cancer Inst 92:18–23

    Article  CAS  PubMed  Google Scholar 

  40. Aoudjit F, Vuori K (2001) Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 20:4995–5004

    Article  CAS  PubMed  Google Scholar 

  41. Sethi T, Rintoul RC, Moore SM, MacKinnon AC, Salter D, Choo C, Chilvers ER, Dransfield I, Donnelly SC, Strieter R, Haslett C (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5:662–668

    Article  CAS  PubMed  Google Scholar 

  42. Rintoul RC, Sethi T (2002) Extracellular matrix regulation of drug resistance in small-cell lung cancer. Clin Sci (Lond) 102:417–424

    Article  CAS  Google Scholar 

  43. Desgrosellier JS, Cheresh DA (2009) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    Article  Google Scholar 

  44. Zhang H, Ozaki I, Mizuta T, Matsuhashi S, Yoshimura T, Hisatomi A, Tadano J, Sakai T, Yamamoto K (2002) Beta 1-integrin protects hepatoma cells from chemotherapy induced apoptosis via a mitogen-activated protein kinase dependent pathway. Cancer 95:896–906

    Article  CAS  PubMed  Google Scholar 

  45. Hongo K, Tanaka J, Tsuno NH, Kawai K, Nishikawa T, Shuno Y, Sasaki K, Kaneko M, Hiyoshi M, Sunami E, Kitayama J, Takahashi K, Nagawa H (2011) CD133(-) cells, derived from a single human colon cancer cell line, are more resistant to 5-fluorouracil (FU) than CD133(+) cells, dependent on the beta1-integrin signaling. J Surg Res 175:278–288

    Article  PubMed  Google Scholar 

  46. Brenner H, Kloor M, Pox CP (2013) Colorectal cancer. Lancet 383:1490–1502

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University, National Natural Science Foundation (81201583), and International S&T Cooperation Program (2013DFA32110) of China.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinliang Xing or Xianli He.

Additional information

Feng Zhou and Xiaojun Huang have contributed to this work equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Huang, X., Zhang, Z. et al. Functional polymorphisms of ITGB1 are associated with clinical outcome of Chinese patients with resected colorectal cancer. Cancer Chemother Pharmacol 75, 1207–1215 (2015). https://doi.org/10.1007/s00280-015-2745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2745-4

Keywords

Navigation