Skip to main content

Advertisement

Log in

A phase I and pharmacokinetic study of oral perifosine with different loading schedules in patients with refractory neoplasms

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To determine the maximum tolerated dose (MTD) of perifosine (NSC 639966), an alkylphospholipid modulator of signal transduction, using different oral loading and maintenance regimens in an effort to avoid gastrointestinal toxicity while seeking maximal sustained plasma concentrations.

Methods

Thirty-one patients with advanced neoplasms were treated with monthly cycles of perifosine loading doses of 300, 600, 900, 1,200 and 1,500 mg (dose levels 1 through 5, respectively) on days 1–2 depending on the actual dose of the initial cycle. For subsequent cycles, perifosine loading doses were reduced to 100, 200, 300, 400 and 1,000 mg at the respective corresponding dose levels. Daily perifosine “maintenance” doses of 50, 100, 150, 200 and 250 mg for levels 1 through 5, respectively, commenced on days 2 or 3 and continued for a total of 21 days. No treatment was given for days 22–27. The pharmacokinetics of perifosine with these schedules was characterized.

Results

Dose-limiting diarrhea developed at or above dose level 4. The MTD and recommended phase II dose was dose level 3B, with a loading dose of 900 mg on day 1 divided into two doses of 450 mg administered 6 h apart and a maintenance dose of 150 mg on day 2 through 21. On subsequent cycles, the loading dose was reduced to 300 mg. Non-gastrointestinal toxicities included three episodes of gout or gout-like syndromes observed at doses above the MTD. The median peak plasma concentration of perifosine achieved at the MTD was approximately 8.3 µg/mL. Four patients had stable disease ranging from 167 to 735 days.

Conclusions

Perifosine given according to a loading and maintenance schedule can safely sustain concentrations of drug, approaching concentrations achieved in preclinical models with evidence of anti-tumor effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arthur G, Bittman R (1998) The inhibition of cell signaling pathways by antitumor ether lipids. Biochim Biophys Acta Lipids Lipid Metab 1390(1):85–102

    Article  CAS  Google Scholar 

  2. Herrmann DBJ (1985) Changes in cellular lipid-synthesis of normal and neoplastic-cells during cytolysis induced by alkyl lysophospholipid analogs. J Natl Cancer Inst 75(3):423–430

    PubMed  CAS  Google Scholar 

  3. Modolell M, Andreesen R, Pahlke W, Brugger U, Munder PG (1979) Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids. Cancer Res 39(11):4681–4686

    PubMed  CAS  Google Scholar 

  4. Ruiter GA, Verheij M, Zerp SF, van Blitterswijk WJ (2001) Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int J Radiat Oncol 49(2):415–419

    Article  CAS  Google Scholar 

  5. Vehmeyer K, Scheurich P, Eibl H, Unger C (1991) Hexadecylphosphocholine-mediated enhancement of T-cell responses to interleukin-2. Cell Immunol 137(1):232–238

    Article  PubMed  CAS  Google Scholar 

  6. Seewald MJ, Olsen RA, Sehgal I, Melder DC, Modest EJ, Powis G (1990) Inhibition of growth factor-dependent inositol phosphate Ca-2 + signaling by antitumor ether lipid analogs. Cancer Res 50(15):4458–4463

    PubMed  CAS  Google Scholar 

  7. Strassheim D, Shafer SH, Phelps SH, Williams CL (2000) Small cell lung carcinoma exhibits greater phospholipase C-beta 1 expression and edelfosine resistance compared with non-small cell lung carcinoma. Cancer Res 60(10):2730–2736

    PubMed  CAS  Google Scholar 

  8. Uberall F, Oberhuber H, Maly K, Zaknun J, Demuth L, Grunicke HH (1991) Hexadecylphosphocholine inhibits inositol phosphate formation and protein-kinase-C activity. Cancer Res 51(3):807–812

    PubMed  CAS  Google Scholar 

  9. van der Luit AH, Budde M, Ruurs P, Verheij M, van Blitterswijk WJ (2002) Alkyl-lysophospholipid accumulates in lipid rafts and induces apoptosis via raft-dependent endocytosis and inhibition of phosphatidylcholine synthesis. J Biol Chem 277(42):39541–39547

    Article  PubMed  Google Scholar 

  10. Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ (1999) Alkyl-lysophospholipids activate the SAPK/JNK signaling pathway and enhance radiation-induced apoptosis. Eur J Cancer 35:S179

    Article  Google Scholar 

  11. Patel V, Lahusen T, Sy T, Sausville EA, Gutkind JS, Senderowicz AM (2002) Perifosine, a novel alkylphospholipid, induces p21(WAF1) expression in squamous carcinoma cells through a p53-independent pathway, leading to loss in cyclin-dependent kinase activity and cell cycle arrest. Cancer Res 62(5):1401–1409

    PubMed  CAS  Google Scholar 

  12. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103

    PubMed  CAS  Google Scholar 

  13. Ruiter GA, Zerp SF, Bartelink H, van Blitterswijk WJ, Verheij M (2003) Anti-cancer alkyl-lysophospholipids inhibit the phosphatidylinositol 3-kinase-Akt/PKB survival pathway. Anticancer Drugs 14(2):167–173

    Article  PubMed  CAS  Google Scholar 

  14. Fensterle J, Aicher B, Seipelt I, Teifel M, Engel J (2014) Current view on the mechanism of action of perifosine in cancer. Anticancer Agents Med Chem 14(4):629–635

    Article  PubMed  CAS  Google Scholar 

  15. Naundorf H, Rewasowa EC, Fichtner I, Buttner B, Becker M, Gorlich M (1992) Characterization of two human mammary carcinomas, MT-1 and MT-3, suitable for in vivo testing of ether lipids and their derivatives. Breast Cancer Res Treat 23(1–2):87–95

    Article  PubMed  CAS  Google Scholar 

  16. Safa O, Parkin SM, Matthew AM, Bibby MC (1997) Morphological and immunological observations on the effects of hexadecylphosphocholine (HPC) in nude mice bearing MT-1 breast cancer xenografts. Anticancer Res 17(1A):37–43

    PubMed  CAS  Google Scholar 

  17. Planting AST, Stoter G, Verweij J (1993) Phase-Ii study of daily oral miltefosine (hexadecylphosphocholine) in advanced colorectal-cancer. Eur J Cancer 29A(4):518–519

    Article  PubMed  CAS  Google Scholar 

  18. Verweij J, Planting A, Vanderburg M, Stoter G (1992) A dose-finding study of miltefosine (hexadecylphosphocholine) in patients with metastatic solid tumors. J Cancer Res Clin Oncol 118(8):606–608

    Article  PubMed  CAS  Google Scholar 

  19. Verweij J, Krzemieniecki K, Kok T et al (1993) Phase II study of miltefosine (hexadecylphosphocholine) in advanced soft tissue sarcomas of the adult—an EORTC Soft Tissue and Bone Sarcoma Group Study. Eur J Cancer 29A(2):208–209

    Article  PubMed  CAS  Google Scholar 

  20. Dummer R, Krasovec M, Roger J, Sindermann H, Burg G (1993) Topical administration of hexadecylphosphocholine in patients with cutaneous lymphomas—results of a phase-I/II study. J Am Acad Dermatol 29(6):963–970

    Article  PubMed  CAS  Google Scholar 

  21. Leonard R, Hardy J, van Tienhoven G et al (2001) Randomized, double-blind, placebo-controlled, multicenter trial of 6% miltefosine solution, a topical chemotherapy in cutaneous metastases from breast cancer. J Clin Oncol 19(21):4150–4159

    PubMed  CAS  Google Scholar 

  22. Jha TK, Sundar S, Thakur CP et al (1999) Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N Engl J Med 341(24):1795–1800

    Article  PubMed  CAS  Google Scholar 

  23. Hilgard P, Klenner T, Stekar J, Nossner G, Kutscher B, Engel J (1997) D-21266, a new heterocyclic alkylphospholipid with antitumour activity. Eur J Cancer 33(3):442–446

    Article  PubMed  CAS  Google Scholar 

  24. Crul M, Rosing H, de Klerk GJ et al (2002) Phase I and pharmacological study of daily oral administration of perifosine (D-21266) in patients with advanced solid tumours. Eur J Cancer 38(12):1615–1621

    Article  PubMed  CAS  Google Scholar 

  25. Woo EW, Messmann R, Sausville EA, Figg WD (2001) Quantitative determination of perifosine, a novel alkylphosphocholine anticancer agent, in human plasma by reversed-phase liquid chromatography-electrospray mass spectrometry. J Chromatogr B 759(2):247–257

    Article  CAS  Google Scholar 

  26. Traiser M, Reichert S, Voss A (1998) Current development status of the second generation alkylphosphocholine analog perifosine. Drugs Today 34:67–71

    CAS  Google Scholar 

  27. Unger C, Berdel W, Hanauske AR, Sindermann H, Engel J, Mross K (2010) First-time-in-man and pharmacokinetic study of weekly oral perifosine in patients with solid tumours. Eur J Cancer 46(5):920–925

    Article  PubMed  CAS  Google Scholar 

  28. Van Ummersen L, Binger K, Volkman J et al (2004) A phase I trial of perifosine (NSC 639966) on a loading dose/maintenance dose schedule in patients with advanced cancer. Clin Cancer Res 10(22):7450–7456

    Article  PubMed  Google Scholar 

  29. Posadas EM, Gulley J, Arlen PM et al (2005) A phase II study of perifosine in androgen independent prostate cancer. Cancer Biol Ther 4(10):1133–1137

    Article  PubMed  CAS  Google Scholar 

  30. Ernst DS, Eisenhauer E, Wainman N et al (2005) Phase II study of perifosine in previously untreated patients with metastatic melanoma. Invest New Drugs 23(6):569–575

    Article  PubMed  CAS  Google Scholar 

  31. Cho DC, Hutson TE, Samlowski W et al (2012) Two phase 2 trials of the novel Akt inhibitor perifosine in patients with advanced renal cell carcinoma after progression on vascular endothelial growth factor-targeted therapy. Cancer 118(24):6055–6062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Jakubowiak AJ, Richardson PG, Zimmerman T, Alsina M, Kaufman JL, Kandarpa M, Kraftson S, Ross CW, Harvey C, Hideshima T, Sportelli P, Poradosu E, Gardner L, Giusti K, Anderson KC (2012) Perifosine plus lenalidomide and dexamethasone in relapsed and relapsed/refractory multiple myeloma: a Phase I Multiple Myeloma Research Consortium study. Br J Haematol 158(4):472–480

    Article  PubMed  CAS  Google Scholar 

  33. Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C, Podar K, Munshi NC, Chauhan D, Richardson PG, Anderson KC (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107(10):4053–4062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Richardson PG, Wolf J, Jakubowiak A et al (2011) Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol 29(32):4243–4249

    Article  PubMed  CAS  Google Scholar 

  35. Richardson PG, Nagler A, Ben-Yehuda D, Badros AZ, Hari P, Hajek R, Spicka I, Kaya H, Le Blanc R, Yoon S–S, Kim K, Martinez-Lopez J, Mittelman M, Shpilberg O, Tothova E, Laubach JP, Ghobrial IM, Leiba M, Gatt ME, Sportelli P, Chen M, Anderson KC (2013) Randomized placebo-controlled phase III study of perifosine combined with bortezomib and dexamethasone in relapsed, refractory multiple myeloma patients previously treated with bortezomib. ASH 2013 annual meeting abstract 3189 (poster presentation)

  36. Bendell JC, Nemunaitis J, Vukelja SJ, Hagenstad C, Campos LT, Hermann RC, Sportelli P, Gardner L, Richards DA (2011) Randomized placebo-controlled phase II trial of perifosine plus capecitabine as second- or third-line therapy in patients with metastatic colorectal cancer. J Clin Oncol 29(33):4394–4400

    Article  PubMed  CAS  Google Scholar 

  37. Bendell JC, Senzer NN, Richards DA, Firdaus I, Lockhart AC, Cohn AL, Saleh MN, Gardner LR, Sportelli P (2012) Cathy eng. Results of the X-PECT study: a phase III randomized double-blind, placebo-controlled study of perifosine plus capecitabine (P-CAP) versus placebo plus capecitabine (CAP) in patients (pts) with refractory metastatic colorectal cancer (mCRC). J Clin Oncol 30(suppl: abstr LBA3501)

Download references

Acknowledgments

We thank the nursing staff of National Cancer Institute and the fellows of the Medical Oncology Branch at National Cancer Institute for their care of our patients; Cancer Therapy and Evaluation Program for sponsoring the trial; Eunhee W. Woo (deceased, and to whose memory we dedicate this paper), Suoping Zhai, Kyung Hwang and Nicola Smith for their assistance in conducting this study; and Victoria Giffi for editorial assistance. This work was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health. This is a US Government work. There are no restrictions on its use. The views expressed within this paper do not necessarily reflect those of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Figg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figg, W.D., Monga, M., Headlee, D. et al. A phase I and pharmacokinetic study of oral perifosine with different loading schedules in patients with refractory neoplasms. Cancer Chemother Pharmacol 74, 955–967 (2014). https://doi.org/10.1007/s00280-014-2569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2569-7

Keywords

Navigation