Skip to main content
Log in

Comparison of human leukocyte antigen in patients with paroxysmal nocturnal hemoglobinuria of different clone sizes

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Glycosylphosphatidylinositol-anchored protein-deficient hematopoietic stem and progenitor cell development caused by PIGA mutations cannot fully explain the pathogenesis of paroxysmal nocturnal hemoglobinuria (PNH). Herein, patients newly diagnosed with PNH at our hospital between April 2019 and April 2021 were recruited. The human leukocyte antigen (HLA) class I and II loci were analyzed, and patients were stratified by PNH clone sizes: small (< 50%) and large (≥ 50%). In 40 patients (29 males; 72.5%), the median PNH clone size was 72%. Thirteen (32.5%) and twenty-seven (67.5%) patients harbored small and large PNH clones, respectively. DRB1*15:01 and DQB1*06:02 had higher frequencies in patients with PNH than in healthy controls (adjusted P-value = 4.10 × 10–4 and 4.10 × 10–4, respectively). Whole HLA class I and II allele contributions differed (P = 0.046 and 0.065, not significant difference) when comparing patients with small and large PNH clones. B*13:01 and C*04:01 allelic frequencies were significantly higher in patients with small clones (P = 0.032 and P = 0.032, respectively). Patients with small clones had higher class II HLA evolutionary divergence (HED) (P = 0.041) and global class I and II HED (P = 0.019). In the entire cohort, 17 HLA aberrations were found in 11 (27.5%) patients. No significant differences in HLA aberrations were found between patients with small or large clones. In conclusion, patients with small clones tended to have a higher frequency of immune attack-associated alleles. A higher HED in patients with small clones may reflect a propensity for T cell-mediated autoimmunity. HLA aberrations were similar between patients with small and large clones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets are not publicly available for personal data protection reasons, but are available from the corresponding author upon reasonable request.

References

  1. Brodsky RA (2014) Paroxysmal nocturnal hemoglobinuria. Blood 124(18):2804–2811. https://doi.org/10.1182/blood-2014-02-522128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huang Y, Liu X, Chen F, Zhou W, Li H, Long Z, Yang C, Chen M, Han B (2019) Prediction of thrombosis risk in patients with paroxysmal nocturnal hemoglobinuria. Ann Hematol 98(10):2283–2291. https://doi.org/10.1007/s00277-019-03770-3

    Article  CAS  PubMed  Google Scholar 

  3. Kulagin A, Lisukov I, Ivanova M, Golubovskaya I, Kruchkova I, Bondarenko S, Vavilov V, Stancheva N, Babenko E, Sipol A, Pronkina N, Kozlov V, Afanasyev B (2014) Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression: results of two-centre prospective study. Br J Haematol 164(4):546–554. https://doi.org/10.1111/bjh.12661

    Article  CAS  PubMed  Google Scholar 

  4. Takeda J, Miyata T, Kawagoe K, Iida Y, Endo Y, Fujita T, Takahashi M, Kitani T, Kinoshita T (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73(4):703–711. https://doi.org/10.1016/0092-8674(93)90250-t

    Article  CAS  PubMed  Google Scholar 

  5. Hu R, Mukhina GL, Piantadosi S, Barber JP, Jones RJ, Brodsky RA (2005) PIG-A mutations in normal hematopoiesis. Blood 105(10):3848–3854. https://doi.org/10.1182/blood-2004-04-1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luzzatto L, Bessler M, Rotoli B (1997) Somatic mutations in paroxysmal nocturnal hemoglobinuria: a blessing in disguise? Cell 88(1):1–4. https://doi.org/10.1016/s0092-8674(00)81850-4

    Article  CAS  PubMed  Google Scholar 

  7. Shichishima T, Okamoto M, Ikeda K, Kaneshige T, Sugiyama H, Terasawa T, Osumi K, Maruyama Y (2002) HLA class II haplotype and quantitation of WT1 RNA in Japanese patients with paroxysmal nocturnal hemoglobinuria. Blood 100(1):22–28. https://doi.org/10.1182/blood.V100.1.22

    Article  CAS  PubMed  Google Scholar 

  8. Maciejewski JP, Follmann D, Nakamura R, Saunthararajah Y, Rivera CE, Simonis T, Brown KE, Barrett JA, Young NS (2001) Increased frequency of HLA-DR2 in patients with paroxysmal nocturnal hemoglobinuria and the PNH/aplastic anemia syndrome. Blood 98(13):3513–3519. https://doi.org/10.1182/blood.V98.13.3513

    Article  CAS  PubMed  Google Scholar 

  9. Nowak J, Mika-Witkowska R, Mendek-Czajkowska E, Rogatko-Koros M, Graczyk-Pol E, Pyl H, Klimczak A, Wojcik M, Prochorec-Sobieszek M, Maryniak R, Zupanska B (2011) The patterns of MHC association in aplastic and non-aplastic paroxysmal nocturnal hemoglobinuria. Arch Immunol Ther Exp 59(3):231–238. https://doi.org/10.1007/s00005-011-0125-2

    Article  CAS  Google Scholar 

  10. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185(4154):862–864. https://doi.org/10.1126/science.185.4154.862

    Article  CAS  PubMed  Google Scholar 

  11. Pierini F, Lenz TL (2018) Divergent allele advantage at human mhc genes: signatures of past and ongoing selection. Mol Biol Evol 35(9):2145–2158. https://doi.org/10.1093/molbev/msy116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272(5258):67–74. https://doi.org/10.1126/science.272.5258.67

    Article  CAS  PubMed  Google Scholar 

  13. Wakeland EK, Boehme S, She JX, Lu CC, McIndoe RA, Cheng I, Ye Y, Potts WK (1990) Ancestral polymorphisms of MHC class II genes: divergent allele advantage. Immunol Res 9(2):115–122. https://doi.org/10.1007/bf02918202

    Article  CAS  PubMed  Google Scholar 

  14. Chowell D, Krishna C, Pierini F, Makarov V, Rizvi NA, Kuo F, Morris LGT, Riaz N, Lenz TL, Chan TA (2019) Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy. Nat Med 25(11):1715–1720. https://doi.org/10.1038/s41591-019-0639-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Daull AM, Dubois V, Labussière-Wallet H, Venet F, Barraco F, Ducastelle-Lepretre S, Larcher MV, Balsat M, Gilis L, Fossard G, Ghesquières H, Heiblig M, Ader F, Alcazer V (2022) Class I/Class II HLA evolutionary divergence ratio is an independent marker associated with disease-free and overall survival after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia. Front Immunol 13:841470. https://doi.org/10.3389/fimmu.2022.841470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roerden M, Nelde A, Heitmann JS, Klein R, Rammensee HG, Bethge WA, Walz JS (2020) HLA Evolutionary divergence as a prognostic marker for AML patients undergoing allogeneic stem cell transplantation. Cancers (Basel) 12(7). https://doi.org/10.3390/cancers12071835

  17. Pagliuca S, Gurnari C, Awada H, Kishtagari A, Kongkiatkamon S, Terkawi L, Zawit M, Guan YH, LaFramboise T, Jha BK, Patel BJ, Hamilton BK, Majhail NS, Lundgren S, Mustjoki S, Saunthararajah Y, Visconte V, Chan TA, Yang CY, Lenz TL, Maciejewski JP (2021) The similarity of class II HLA genotypes defines patterns of autoreactivity in idiopathic bone marrow failure disorders. Blood 138(26):2781–2798. https://doi.org/10.1182/blood.2021012900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parker C, Omine M, Richards S, Nishimura J-i, Bessler M, Ware R, Hillmen P, Luzzatto L, Young N, Kinoshita T, Rosse W, Socié G, Group ftIPI (2005) Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood 106(12):3699–3709. https://doi.org/10.1182/blood-2005-04-1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawaguchi S, Higasa K, Yamada R, Matsuda F (2018) Comprehensive HLA typing from a current allele database using next-generation sequencing data. Methods Mol Biol 1802:225–233. https://doi.org/10.1007/978-1-4939-8546-3_16

    Article  CAS  PubMed  Google Scholar 

  20. Kawaguchi S, Matsuda F (2020) High-definition genomic analysis of HLA genes via comprehensive HLA allele genotyping. Methods Mol Biol 2131:31–38. https://doi.org/10.1007/978-1-0716-0389-5_3

    Article  PubMed  Google Scholar 

  21. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O (2014) OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics 30(23):3310–3316. https://doi.org/10.1093/bioinformatics/btu548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Claeys A, Merseburger P, Staut J, Marchal K, van den Eynden J (2023) Benchmark of tools for in silico prediction of MHC class I and class II genotypes from NGS data. BMC Genomics 24(1). https://doi.org/10.1186/s12864-023-09351-z

  23. Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE (2020) IPD-IMGT/HLA database. Nucleic Acids Res 48(D1):D948-d955. https://doi.org/10.1093/nar/gkz950

    Article  CAS  PubMed  Google Scholar 

  24. Pagliuca S, Gurnari C, Hercus C, Hergalant S, Nadarajah N, Wahida A, Terkawi L, Mori M, Zhou W, Visconte V, Spellman S, Gadalla SM, Zhu C, Zhu P, Haferlach T, Maciejewski JP (2023) Molecular landscape of immune pressure and escape in aplastic anemia. Leukemia 37(1):202–211. https://doi.org/10.1038/s41375-022-01723-w

    Article  CAS  PubMed  Google Scholar 

  25. Brunak S, Engelbrecht J, Knudsen S (1991) Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220(1):49–65. https://doi.org/10.1016/0022-2836(91)90380-o

    Article  CAS  PubMed  Google Scholar 

  26. Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol 12(4):e1004873. https://doi.org/10.1371/journal.pcbi.1004873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou F, Cao H, Zuo X, Zhang T, Zhang X, Liu X, Xu R, Chen G, Zhang Y, Zheng X, Jin X, Gao J, Mei J, Sheng Y, Li Q, Liang B, Shen J, Shen C, Jiang H, Zhu C, Fan X, Xu F, Yue M, Yin X, Ye C, Zhang C, Liu X, Yu L, Wu J, Chen M, Zhuang X, Tang L, Shao H, Wu L, Li J, Xu Y, Zhang Y, Zhao S, Wang Y, Li G, Xu H, Zeng L, Wang J, Bai M, Chen Y, Chen W, Kang T, Wu Y, Xu X, Zhu Z, Cui Y, Wang Z, Yang C, Wang P, Xiang L, Chen X, Zhang A, Gao X, Zhang F, Xu J, Zheng M, Zheng J, Zhang J, Yu X, Li Y, Yang S, Yang H, Wang J, Liu J, Hammarström L, Sun L, Wang J, Zhang X (2016) Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat Genet 48(7):740–746. https://doi.org/10.1038/ng.3576

    Article  CAS  PubMed  Google Scholar 

  28. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

    Article  Google Scholar 

  29. Fuhrer M, Durner J, Brunnler G, Gotte H, Deppner C, Bender-Gotze C, Albert E (2007) HLA association is different in children and adults with severe acquired aplastic anemia. Pediatr Blood Cancer 48(2):186–191. https://doi.org/10.1002/pbc.20785

    Article  PubMed  Google Scholar 

  30. Nakao S, Takamatsu H, Chuhjo T, Ueda M, Shiobara S, Matsuda T, Kaneshige T, Mizoguchi H (1994) Identification of a specific HLA class-II haplotype strongly associated with susceptibility to cyclosporine-dependent aplastic-anemia. Blood 84(12):4257–4261. https://doi.org/10.1182/blood.V84.12.4257.bloodjournal84124257

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Nie N, Feng SZ, Shi J, Ge ML, Li XX, Shao YQ, Huang JB, Zheng YZ (2014) The polymorphisms of human leukocyte antigen loci may contribute to the susceptibility and severity of severe aplastic anemia in Chinese patients. Hum Immunol 75(8):867–872. https://doi.org/10.1016/j.humimm.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  32. Zaimoku Y, Patel BA, Adams SD, Shalhoub R, Groarke EM, Lee AAC, Kajigaya S, Feng XM, Rios OJ, Eager H, Alemu L, Raffo DQ, Wu CO, Flegel WA, Young NS (2021) HLA associations, somatic loss of HLA expression, and clinical outcomes in immune aplastic anemia. Blood 138(26):2799–2809. https://doi.org/10.1182/blood.2021012895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zaimoku Y, Takamatsu H, Hosomichi K, Ozawa T, Nakagawa N, Imi T, Maruyama H, Katagiri T, Kishi H, Tajima A, Muraguchi A, Kashiwase K, Nakao S (2017) Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood 129(21):2908–2916. https://doi.org/10.1182/blood-2016-11-752378

    Article  CAS  PubMed  Google Scholar 

  34. Hosokawa K, Mizumaki H, Yoroidaka T, Maruyama H, Imi T, Tsuji N, Urushihara R, Tanabe M, Zaimoku Y, Nguyen MAT, Tran DC, Ishiyama K, Yamazaki H, Katagiri T, Takamatsu H, Hosomichi K, Tajima A, Azuma F, Ogawa S, Nakao S (2021) HLA class I allele-lacking leukocytes predict rare clonal evolution to MDS/AML in patients with acquired aplastic anemia. Blood 137(25):3576–3580. https://doi.org/10.1182/blood.2020010586

    Article  CAS  PubMed  Google Scholar 

  35. Babushok DV, Duke JL, Xie HBM, Stanley N, Atienza J, Perdigones N, Nicholas P, Ferriola D, Li YM, Huang H, Ye WD, Morrissette JJD, Kearns J, Porter DL, Podsakoff GM, Eisenlohr LC, Biegel JA, Chou ST, Monos DS, Bessler M, Olson TS (2017) Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv 1(22):1900–1910. https://doi.org/10.1182/bloodadvances.2017010918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olson TS, Frost BF, Duke JL, Dribus M, Xie HBM, Prudowsky ZD, Furutani E, Gudera J, Shah YB, Ferriola D, Dinou A, Pagkrati I, Kim S, Xu YX, He ML, Zheng SO, Nijim S, Lin P, Xu C, Nakano TA, Oved JH, Carreno BM, Bolon YT, Gadalla SM, Marsh SG, Paczesny S, Lee SJ, Monos DS, Shimamura A, Bertuch AA, Gragert L, Spellman SR, Babushok DV (2022) Pathogenicity and impact of HLA class I alleles in aplastic anemia patients of different ethnicities. JCI Insight 7(22). https://doi.org/10.1172/jci.insight.163040

  37. Mizumaki H, Hosomichi K, Hosokawa K, Yoroidaka T, Imi T, Zaimoku Y, Katagiri T, Nguyen MAT, Tran DC, Elbadry MIY, Chonabayashi K, Yoshida Y, Takamatsu H, Ozawa T, Azuma F, Kishi H, Fujii Y, Ogawa S, Tajima A, Nakao S (2021) A frequent nonsense mutation in exon 1 across certain HLA-A and HLA-B alleles in leukocytes of patients with acquired aplastic anemia. Haematologica 106(6):1581–1590. https://doi.org/10.3324/haematol.2020.247809

    Article  CAS  PubMed  Google Scholar 

  38. Lombardi ML, Terrazzano G, Cosentini E, Gargiulo L, Risitano A, Camerlingo R, Sica M, Aufiero D, Poggi A, Pirozzi G, Luzzatto L, Rotoli B, Notaro R, Alfinito F, Ruggiero G (2008) Paroxysmal nocturnal hemoglobinuria: Significant association with specific HLA-A, -B, -C, and -DR alleles in an Italian population. Hum Immunol 69(3):202–206. https://doi.org/10.1016/j.humimm.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  39. Sugimori C, Yamazaki H, Feng XM, Mochizuki K, Kondo Y, Takami A, Chuhjo T, Kimura A, Teramura M, Mizoguchi H, Omine M, Nakao S (2007) Roles of DRB1*1501 and DRB1*1502 in the pathogenesis of aplastic anemia. Exp Hematol 35(1):13–20. https://doi.org/10.1016/j.exphem.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  40. Shichishima T, Noji H, Ikeda K, Akutsu K, Maruyama Y (2006) The frequency of HLA class I alleles in Japanese patients with bone marrow failure. Haematologica 91(6):856–857

    CAS  PubMed  Google Scholar 

  41. Chen LY, Ge ML, Huo JL, Ren X, Shao YQ, Li XX, Huang JB, Wang M, Nie N, Zhang J, Peng J, Zheng YZ (2023) Association between human leukocyte antigen and immunosuppressive treatment outcomes in Chinese patients with aplastic anemia. Front Immunol 14. https://doi.org/10.3389/fimmu.2023.1056381

  42. Song EY, Kang HJ, Shin HY, Ahn HS, Kim I, Yoon SS, Park S, Kim BK, Park MH (2010) Association of human leukocyte antigen class II alleles with response to immunosuppressive therapy in Korean aplastic anemia patients. Hum Immunol 71(1):88–92. https://doi.org/10.1016/j.humimm.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  43. Montesion M, Murugesan K, Jin DX, Sharaf R, Sanchez N, Guria A, Minker M, Li G, Fisher V, Sokol ES, Pavlick DC, Moore JA, Braly A, Singal G, Fabrizio D, Comment LA, Rizvi NA, Alexander BM, Frampton GM, Hegde PS, Albacker LA (2021) Somatic HLA Class I loss is a widespread mechanism of immune evasion which refines the use of tumor mutational burden as a biomarker of checkpoint inhibitor response. Cancer Discov 11(2):282–292. https://doi.org/10.1158/2159-8290.Cd-20-0672

    Article  CAS  PubMed  Google Scholar 

  44. Stevenson EV, Collins-McMillen D, Kim JH, Cieply SJ, Bentz GL, Yurochko AD (2014) HCMV reprogramming of infected monocyte survival and differentiation: a goldilocks phenomenon. Viruses-Basel 6(2):782–807. https://doi.org/10.3390/v6020782

    Article  CAS  Google Scholar 

  45. Zeng H (2017) mTOR signaling in immune cells and its implications for cancer immunotherapy. Cancer Lett 408:182–189. https://doi.org/10.1016/j.canlet.2017.08.038

    Article  CAS  PubMed  Google Scholar 

  46. Murakami Y, Kosaka H, Maeda Y, Nishimura J, Inoue N, Ohishi K, Okabe M, Takeda J, Kinoshita T (2002) Inefficient response of T lymphocytes to glycosylphosphatidylinositol anchor-negative cells: implications for paroxysmal nocturnal hemoglobinuria. Blood 100(12):4116–4122. https://doi.org/10.1182/blood-2002-06-1669

    Article  CAS  PubMed  Google Scholar 

  47. Fernandez-Torres J, Flores-Jimenez D, Arroyo-Perez A, Granados J, Lopez-Reyes A (2012) The ancestry of the HLA-DRB1*15 allele predisposes the Mexican mestizo to the development of aplastic anemia. Hum Immunol 73(8):840–843. https://doi.org/10.1016/j.humimm.2012.04.012

    Article  CAS  PubMed  Google Scholar 

  48. Shao WS, Tian D, Liu CY, Sun XJ, Zhang XJ (2000) Aplastic anemia is associated with HLA-DRB1*1501 in Northern Han Chinese. Int J Hematol 71(4):350–352

    CAS  PubMed  Google Scholar 

  49. Song EY, Park S, Lee DS, Cho HI, Park MH (2008) Association of human leukocyte antigen-DRB1 alleles with disease susceptibility and severity of aplastic anemia in Korean patients. Hum Immunol 69(6):354–359. https://doi.org/10.1016/j.humimm.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  50. Qi J, Wang TJ, Li HX, Wu D, Du D, Wu JH, Shang LX, Chen L, Wang MN, Wang XF (2020) Association of HLA class II (-DRB1,-DQB1,-DPB1) alleles and haplotypes on susceptibility to aplastic anemia in northern Chinese Han. Hum Immunol 81(12):685–691. https://doi.org/10.1016/j.humimm.2020.07.001

    Article  CAS  PubMed  Google Scholar 

  51. Akram Z, Ahmed P, Kajigaya S, Satti TM, Satti HS, Chaudhary QUN, Gutierrez-Rodrigues F, Ibanez PF, Feng XM, Mahmood SK, Ghafoor T, Shahbaz N, Khan MA, Sultan A (2019) Epidemiological, clinical and genetic characterization of aplastic anemia patients in Pakistan. Ann Hematol 98(2):301–312. https://doi.org/10.1007/s00277-018-3542-z

    Article  CAS  PubMed  Google Scholar 

  52. Ihan O, Beksac M, Arslan O, Ozcan M, Koc H, Akan H, Gurman G, Konuk N, Uysal A (1997) HLA DR2: A predictive marker in response to cyclosporine therapy in aplastic anemia. Int J Hematol 66(3):291–295

    Article  CAS  PubMed  Google Scholar 

  53. Kapustin SI, Popova TI, Lyshchov AA, Imyanitov EN, Blinov MN, Abdulkadyrov KM (2001) HLA-DR4-Ala74 ss is associated with risk and poor outcome of severe aplastic anemia. Ann Hematol 80(2):66–71. https://doi.org/10.1007/s002770000234

    Article  CAS  PubMed  Google Scholar 

  54. Oguz FS, Yalman N, Diler AS, Oguz R, Anak S, Dorak MT (2002) HLA-DRB1*15 and pediatric aplastic anemia. Haematologica 87(7):772–774

    PubMed  Google Scholar 

  55. Dhaliwal JS, Wong L, Kamaluddin MA, Yin LY, Murad S (2011) Susceptibility to aplastic anemia is associated with HLA-DRB1*1501 in an aboriginal population in Sabah, Malaysia. Hum Immunol 72(10):889–892. https://doi.org/10.1016/j.humimm.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  56. Nimer SD, Ireland P, Meshkinpour A, Frane M (1994) An increased HLA DR2 frequency is seen in aplastic-anemia patients. Blood 84(3):923–927

    Article  CAS  PubMed  Google Scholar 

  57. Yari F, Sobhani M, Vaziri MZ, Bagheri N, Sabaghi F, Talebian A (2008) Association of aplastic anaemia and Fanconi’s disease with HLA-DRB1 alleles. Int J Immunogenet 35(6):453–456. https://doi.org/10.1111/j.1744-313X.2008.00810.x

    Article  CAS  PubMed  Google Scholar 

  58. Chen C, Lu SY, Luo M, Zhang BH, Xiao LL (2012) Correlations between HLA-A, HLA-B and HLA-DRB1 allele polymorphisms and childhood susceptibility to acquired aplastic anemia. Acta Haematol 128(1):23–27. https://doi.org/10.1159/000337094

    Article  CAS  PubMed  Google Scholar 

  59. Rehman S, Saba N, Khalilullah MS, Ahmed P, Mehmood T (2009) The frequency of HLA Class I and II alleles in Pakistani patients with aplastic anemia. Immunol Invest 38(8):812–819. https://doi.org/10.3109/08820130903271415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by funding from the National Natural Science Foundation (82370121), Beijing Natural Science Foundation (2023) (7232109), National High Level Hospital Clinical Research Funding (2022-PUMCH-C-026, 2022-PUMCH-D-002, 2022-PUMCH-B-046), and the CAMS Innovation Fund for Medical Sciences (2023-12M-C&T-B-013).

Author information

Authors and Affiliations

Authors

Contributions

Zhuxin Zhang: Data curation, Formal analysis, Investigation; Writing the original draft, Writing the review, and Editing.

Qinglin Hu: Data curation; Formal analysis; Investigation.

Chen Yang: Conceptualization; Resources.

Miao Chen: Conceptualization; Resources.

Bing Han: Conceptualization; Funding acquisition, Methodology; Resources; Supervision; Validation.

Corresponding authors

Correspondence to Miao Chen or Bing Han.

Ethics declarations

Ethics approval

All procedures were approved by the Ethics Committee of Peking Union Medical College Hospital and were in accordance with the Helsinki Declaration of 1975 as revised in 2008.

Conflict of interest

The funders played no role in the study design; collection, analysis, and interpretation of data; writing of the report; or the decision to submit the article for publication. The authors have no financial or non-financial conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Hu, Q., Yang, C. et al. Comparison of human leukocyte antigen in patients with paroxysmal nocturnal hemoglobinuria of different clone sizes. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05740-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05740-w

Keywords

Navigation