Skip to main content

Advertisement

Log in

Analysis of mutation profiles in extranodal NK/T-cell lymphoma: clinical and prognostic correlations

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The molecular pathogenesis of extranodal NK/T-cell lymphoma (NKTCL) remains obscured despite the next-generation sequencing (NGS) studies explored on ever larger cohorts in the last decade. We addressed the highly variable mutation frequencies reported among previous studies with comprehensive amplicon coverage and enhanced sequencing depth to achieve higher genomic resolution for novel genetic discovery and comparative mutational profiling of the oncogenesis of NKTCL. Targeted exome sequencing was conducted to interrogate 415 cancer-related genes in a cohort of 36 patients with NKTCL, and a total of 548 single nucleotide variants (SNVs) and 600 Copy number variances (CNVs) were identified. Recurrent amplification of the MCL1 (67%) and PIM1 (56%) genes was detected in a dominant majority of patients in our cohort. Functional mapping of genetic aberrations revealed that an enrichment of mutations in the JAK-STAT signaling pathway, including the cytokine receptor LIFR (copy number loss) upstream of JAK3, STAT3 (activating SNVs), and downstream effectors of MYC, PIM1 and MCL1 (copy number gains). RNA in situ hybridization showed the significant consistence of MCL1 RNA level and copy number of MCL1 gene. We further correlated molecular and clinical parameters with overall survival (OS) of these patients. When correlations were analyzed by univariate followed by multivariate modelling, only copy number loss of LIFR gene and stage (III-IV) were independent prognostic factors of reduced OS. Our findings identified that novel loss of LIFR gene significantly correlated with the adverse clinical outcome of NKTCL patients and provided therapeutic opportunities for this disease through manipulating LIFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ren W et al (2017) Distinct subtype distribution and somatic mutation spectrum of lymphomas in East Asia. Curr Opin Hematol 24(4):367–376

    Article  CAS  PubMed  Google Scholar 

  2. Hu B, Oki Y (2018) Novel Immunotherapy options for Extranodal NK/T-Cell Lymphoma. Front Oncol 8:139

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martinez GS, Ross JA, Kirken RA (2016) Transforming mutations of Jak3 (A573V and M511I) show Differential Sensitivity to selective Jak3 inhibitors. Clin Cancer Drugs 3(2):131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Mel S et al (2019) Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J Hematol Oncol 12(1):33

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cai Q et al (2019) Epstein-Barr virus-positive natural Killer/T-Cell lymphoma. Front Oncol 9:386

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tse E, Kwong YL (2017) The diagnosis and management of NK/T-cell lymphomas. J Hematol Oncol 10(1):85

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y et al (2018) Frequent mutations in natural Killer/T cell lymphoma. Cell Physiol Biochem 49(1):1–16

    Article  PubMed  Google Scholar 

  8. Haverkos BM et al (2016) Extranodal NK/T Cell Lymphoma, nasal type (ENKTL-NT): an update on Epidemiology, Clinical Presentation, and natural history in north American and European cases. Curr Hematol Malig Rep 11(6):514–527

    Article  PubMed  PubMed Central  Google Scholar 

  9. van Doesum JA et al (2021) Extranodal Natural Killer/T-cell lymphoma, nasal type: diagnosis and treatment. Hemasphere 5(2):e523

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jeong SH (2020) Extranodal NK/T cell lymphoma. Blood Res 55(S1):S63–S71

    Article  PubMed  Google Scholar 

  11. Au WY et al (2009) Clinical differences between nasal and extranasal natural killer/T-cell lymphoma: a study of 136 cases from the International Peripheral T-Cell Lymphoma Project. Blood 113(17):3931–3937

    Article  CAS  PubMed  Google Scholar 

  12. Schuler A et al (2017) Extranodal natural killer/T-cell lymphoma, nasal type: a rare but critical diagnosis. JAAD Case Rep 3(3):225–227

    Article  PubMed  PubMed Central  Google Scholar 

  13. Saleem A, Natkunam Y (2020) Extranodal NK/T-Cell Lymphomas: the role of natural killer cells and EBV in Lymphomagenesis. Int J Mol Sci, 21(4)

  14. Kim WY et al (2019) Epstein-Barr Virus-Associated T and NK-Cell Lymphoproliferative diseases. Front Pediatr 7:71

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vose J et al (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26(25):4124–4130

    Article  PubMed  Google Scholar 

  16. Kim SJ et al (2009) Phase II trial of concurrent radiation and weekly cisplatin followed by VIPD chemotherapy in newly diagnosed, stage IE to IIE, nasal, extranodal NK/T-Cell Lymphoma: Consortium for Improving Survival of Lymphoma study. J Clin Oncol 27(35):6027–6032

    Article  CAS  PubMed  Google Scholar 

  17. Yamaguchi M et al (2009) Phase I/II study of concurrent chemoradiotherapy for localized nasal natural killer/T-cell lymphoma: Japan Clinical Oncology Group Study JCOG0211. J Clin Oncol 27(33):5594–5600

    Article  CAS  PubMed  Google Scholar 

  18. Tsai HJ et al (2015) Long-term results of a phase II trial with frontline concurrent chemoradiotherapy followed by consolidation chemotherapy for localized nasal natural killer/T-cell lymphoma. Eur J Haematol 94(2):130–137

    Article  CAS  PubMed  Google Scholar 

  19. Tse E, Au-Yeung R, Kwong YL (2019) Recent advances in the diagnosis and treatment of natural killer/T-cell lymphomas. Expert Rev Hematol 12(11):927–935

    Article  CAS  PubMed  Google Scholar 

  20. Dufva O et al (2018) Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat Commun 9(1):1567

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vogler M, Walter HS, Dyer MJS (2017) Targeting anti-apoptotic BCL2 family proteins in haematological malignancies - from pathogenesis to treatment. Br J Haematol 178(3):364–379

    Article  CAS  PubMed  Google Scholar 

  22. Montes-Mojarro IA et al (2019) Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol

  23. Li Z et al (2019) Recurrent GNAQ mutation encoding T96S in natural killer/T cell lymphoma. Nat Commun 10(1):4209

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gao LM et al (2019) Somatic mutations in KMT2D and TET2 associated with worse prognosis in Epstein-Barr virus-associated T or natural killer-cell lymphoproliferative disorders. Cancer Biol Ther 20(10):1319–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sim SH et al (2017) Novel JAK3-Activating mutations in Extranodal NK/T-Cell Lymphoma, nasal type. Am J Pathol 187(5):980–986

    Article  CAS  PubMed  Google Scholar 

  26. Dobashi A et al (2016) Frequent BCOR aberrations in extranodal NK/T-Cell lymphoma, nasal type. Genes Chromosomes Cancer 55(5):460–471

    Article  CAS  PubMed  Google Scholar 

  27. Choi S et al (2016) Mutational analysis of Extranodal NK/T-Cell Lymphoma using targeted sequencing with a Comprehensive Cancer Panel. Genomics Inf 14(3):78–84

    Article  Google Scholar 

  28. Lee S et al (2015) Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget 6(19):17764–17776

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kucuk C et al (2015) Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun 6:6025

    Article  CAS  PubMed  Google Scholar 

  30. Jiang L et al (2015) Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat Genet 47(9):1061–1066

    Article  CAS  PubMed  Google Scholar 

  31. Xiong J et al (2020) Genomic and Transcriptomic Characterization of Natural Killer T Cell Lymphoma. Cancer Cell 37(3):403–419e6

    Article  CAS  PubMed  Google Scholar 

  32. Somasundaram N et al (2019) Pathogenesis and biomarkers of natural killer T cell lymphoma (NKTL). J Hematol Oncol 12(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karube K et al (2011) Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 118(12):3195–3204

    Article  CAS  PubMed  Google Scholar 

  34. Gao Y et al (2020) KMT2D and TP53 mutation status improve the prognostic value of the International Prognostic Index (IPI) stratification in ENKTL patients. Neoplasma

  35. Xiong J, Zhao WL (2018) Advances in multiple omics of natural-killer/T cell lymphoma. J Hematol Oncol 11(1):134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cho J et al (2020) Immune subtyping of extranodal NK/T-cell lymphoma: a new biomarker and an immune shift during disease progression. Mod Pathol 33(4):603–615

    Article  CAS  PubMed  Google Scholar 

  37. ++ et al (2011) Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling. J Pathol 223(4):496–510

    Article  PubMed  Google Scholar 

  38. Huang Y et al (2010) Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 115(6):1226–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coppo P et al (2009) STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia 23(9):1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Mel S et al (2018) The Genomics and Molecular Biology of Natural Killer/T-Cell Lymphoma: opportunities for translation. Int J Mol Sci, 19(7)

  41. Wang L et al (2021) LncRNA BCYRN1-induced autophagy enhances asparaginase resistance in extranodal NK/T-cell lymphoma. Theranostics 11(2):925–940

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boeva V et al (2014) Multi-factor data normalization enables the detection of copy number aberrations in amplicon sequencing data. Bioinformatics 30(24):3443–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Z et al (2013) Automated quantitative RNA in situ hybridization for resolution of equivocal and heterogeneous ERBB2 (HER2) status in invasive breast carcinoma. J Mol Diagn 15(2):210–219

    Article  CAS  PubMed  Google Scholar 

  44. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  PubMed  Google Scholar 

  45. Koo GC et al (2012) Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov 2(7):591–597

    Article  CAS  PubMed  Google Scholar 

  46. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  47. Seeneevassen L et al (2020) Leukaemia inhibitory factor (LIF) inhibits Cancer Stem cells tumorigenic properties through Hippo kinases activation in gastric Cancer. Cancers (Basel), 12(8)

  48. Johnson RW et al (2016) Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol 18(10):1078–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nicola NA, Babon JJ (2015) Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev 26(5):533–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo Q et al (2015) LIFR functions as a metastasis suppressor in hepatocellular carcinoma by negatively regulating phosphoinositide 3-kinase/AKT pathway. Carcinogenesis 36(10):1201–1212

    Article  CAS  PubMed  Google Scholar 

  51. Chen D et al (2012) LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 18(10):1511–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dong G et al (2022) Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia 36(8):2064–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Ling Huang for help with the tumor samples processing and DNA extraction. We thank Dr. Chi-Kuan Chen for the pathology review at MacKay Memorial Hospital. We also thank Drs. Shang-Yun Liu and Yi-Ting Yang (ACT genomics) for initial bioinformatic analysis of the NGS raw data.

Funding

This work was supported by a grant from the National Science and Technology Council, Taipei, Taiwan (NSTC 111-2314-B195-007) to Y.-C. C. and intramural funding from the Department of Medical Research, MacKay Memorial Hospital (MMH-110-75 and MMH-111-70) to Y.-C. C.

Author information

Authors and Affiliations

Authors

Contributions

Y.-C. C., H.-J. T., K.-H.L. and K.-C.C. conceived and designed the study; Y.-C. C., H.-J. T., N.-W.S., Y.-W.S., Y.-F.C., C.G.-S.C., J.L., M.-C.C., K.-H.L. and K.-C.C provided study materials or patient care; Y.-C. C., H.-J. T., T.-Y.H., N.-W.S., Y.-W.S., Y.-F.C., C.G.-S.C., J.L., M.-C.C., S.-J.C., H.-C.C., K.-H.L., K.-C.C. and S.-H.K. analyzed and interpreted the data; S.-J.C. and H.-C.C. reviewed the NGS raw data and initial analysis reports; Y.-C. C., H.-J. T.-Y.H., K.-H.L. and S.-H.K. wrote the manuscript; and all authors provided final approval of the manuscript. Conflict-of-interest disclosure Drs. Shu-Jen Chen and Hua-Chien Chen are employees of ACT Genomics Co., Ltd, Taipei, Taiwan. All the other authors declare no competing financial interests.

Corresponding authors

Correspondence to Ken-Hong Lim, Kung-Chao Chang or Sung-Hsin Kuo.

Ethics declarations

Disclosure

Drs. Shu-Jen Chen and Hua-Chien Chen are employees of ACT Genomics Co., Ltd, Taipei, Taiwan. All the other authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YC., Tsai, HJ., Huang, TY. et al. Analysis of mutation profiles in extranodal NK/T-cell lymphoma: clinical and prognostic correlations. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05698-9

Keywords

Navigation