Skip to main content

Advertisement

Log in

Autotaxin is a potential predictive marker for the development of veno-occlusive disease/sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT), and stratification of the high-risk group before transplantation is significant. Serum autotaxin (ATX) levels have been reported to increase in patients with liver fibrosis caused by metabolic inhibition from liver sinusoidal endothelial cells. Considering that the pathophysiology of VOD/SOS begins with liver sinusoidal endothelial cell injury, an increase in serum ATX levels may precede the onset of VOD/SOS. A retrospective study with 252 patients, including 12 patients with VOD/SOS, who had received allo-HCT was performed. The cumulative incidence of VOD/SOS was higher in the group with serum ATX levels before conditioning (baseline ATX) above the upper reference limit (high ATX group, p < 0.001), and 1-year cumulative incidences were 22.7% (95% confidence interval [95%CI], 3.1–42.4%) and 3.5% (95%CI, 1.1–5.8%), respectively. In the multivariate analysis, elevated baseline ATX was identified as an independent risk factor for VOD/SOS development and showed an additive effect on the predictive ability of known risk factors. Furthermore, the incidence of VOD/SOS-related mortality was greater in the high ATX group (16.7% vs. 1.3%; p = 0.005). Serum ATX is a potential predictive marker for the development of VOD/SOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are available from the corresponding author upon reasonable request.

References

  1. Copelan EA (2006) Hematopoietic stem-cell transplantation. N Engl J Med 354:1813–1826. https://doi.org/10.1056/nejmc061443

    Article  CAS  PubMed  Google Scholar 

  2. McDonald GB (2010) Hepatobiliary complications of hematopoietic cell transplantation, 40 years on. Hepatology 51:1450–1460. https://doi.org/10.1002/hep.23533

    Article  PubMed  Google Scholar 

  3. Palomo M, Diaz-Ricart M, Carreras E (2019) Endothelial dysfunction in hematopoietic cell transplantation. Clin Hematol Int 1:45–51. https://doi.org/10.2991/chi.d.190317.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. Palomo M, Diaz-Ricart M, Carbo C et al (2009) The release of soluble factors contributing to endothelial activation and damage after hematopoietic stem cell transplantation is not limited to the Allogeneic setting and involves several pathogenic mechanisms. Biol Blood Marrow Transpl 15:537–546. https://doi.org/10.1016/j.bbmt.2009.01.013

    Article  CAS  Google Scholar 

  5. Cairo MS, Cooke KR, Lazarus HM, Chao N (2020) Modified diagnostic criteria, grading classification and newly elucidated pathophysiology of hepatic SOS/VOD after haematopoietic cell transplantation. Brit J Haematol 190:822–836. https://doi.org/10.1111/bjh.16557

    Article  Google Scholar 

  6. Mohty M, Malard F, Abecassis M, et al (2016) Revised diagnosis and severity criteria for sinusoidal obstruction syndrome&sol;veno-occlusive disease in adult patients: a new classification from the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 51:906–912. https://doi.org/10.1038/bmt.2016.130.

  7. Mcdonald GB, Sharma P, Matthews DE et al (1984) Venocclusive Disease of the liver after bone marrow transplantation: diagnosis, incidence, and predisposing factors. Hepatology 4:116–122. https://doi.org/10.1002/hep.1840040121

    Article  CAS  PubMed  Google Scholar 

  8. Jones RJ, Lee KSK, Beschorner WE et al (1987) Venoocclusive disease of the liver following bone marrow transplantation. Transplant 44:778–783. https://doi.org/10.1097/00007890-198712000-00011

  9. Colecchia A, Marasco G, Ravaioli F et al (2017) Usefulness of liver stiffness measurement in predicting hepatic veno-occlusive disease development in patients who undergo HSCT. Bone Marrow Transpl 52:494–497. https://doi.org/10.1038/bmt.2016.320

    Article  CAS  Google Scholar 

  10. Nishida M, Kahata K, Hayase E et al (2018) Novel Ultrasonographic Scoring System of Sinusoidal obstruction syndrome after hematopoietic stem cell transplantation. Biol Blood Marrow Transpl 24:1896–1900. https://doi.org/10.1016/j.bbmt.2018.05.025

    Article  Google Scholar 

  11. Yakushijin K, Atsuta Y, Doki N et al (2016) Sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation: incidence, risk factors and outcomes. Bone Marrow Transpl 51:403–409. https://doi.org/10.1038/bmt.2015.283

    Article  CAS  Google Scholar 

  12. Mohty M, Malard F, Abecassis M et al (2015) Sinusoidal obstruction syndrome/veno-occlusive disease: current situation and perspectives—a position statement from the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transpl 50:781–789. https://doi.org/10.1038/bmt.2015.52

    Article  CAS  Google Scholar 

  13. Salat C, Holler E, Kolb HJ et al (1997) Plasminogen activator inhibitor-1 confirms the diagnosis of hepatic veno-occlusive disease in patients with hyperbilirubinemia after bone marrow transplantation. Blood 89:2184–2188

    Article  CAS  PubMed  Google Scholar 

  14. Faioni EM, Krachmalnicoff A, Bearman SI et al (1993) Naturally occurring anticoagulants and bone marrow transplantation: plasma protein C predicts the development of venocclusive disease of the liver. Blood 81:3458–3462

    Article  CAS  PubMed  Google Scholar 

  15. Tanikawa S, Mori S, Ohhashi K et al (2000) Predictive markers for hepatic veno-occlusive disease after hematopoietic stem cell transplantation in adults: a prospective single center study. Bone Marrow Transpl 26:881–886. https://doi.org/10.1038/sj.bmt.1702624

    Article  CAS  Google Scholar 

  16. Stracke ML, Krutzsch HC, Unsworth EJ et al (1992) Identification, purification, and Partial Sequence Analysis of Autotaxin, a Novel motility-stimulating Protein*. J Biol Chem 267:2524–2529

    Article  CAS  PubMed  Google Scholar 

  17. Tokumura A, Majima E, Kariya Y et al (2002) Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277:39436–39442. https://doi.org/10.1074/jbc.m205623200

    Article  CAS  PubMed  Google Scholar 

  18. Moolenaar WH (2002) Lysophospholipids in the limelight: autotaxin takes center stage. J Cell Biol 158:197–199. https://doi.org/10.1083/jcb.200206094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aikawa S, Hashimoto T, Kano K, Aoki J (2015) Lysophosphatidic acid as a lipid mediator with multiple biological actions. J Biochem 157:81–89. https://doi.org/10.1093/jb/mvu077

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura K, Ohkawa R, Okubo S et al (2007) Measurement of lysophospholipase D/autotaxin activity in human serum samples. Clin Biochem 40:274–277. https://doi.org/10.1016/j.clinbiochem.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura K, Igarashi K, Ide K et al (2008) Validation of an autotaxin enzyme immunoassay in human serum samples and its application to hypoalbuminemia differentiation. Clin Chim Acta 388:51–58. https://doi.org/10.1016/j.cca.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  22. Yamazaki T, Joshita S, Umemura T et al (2017) Association of Serum Autotaxin Levels with liver fibrosis in patients with chronic Hepatitis C. Sci Rep 7:46705. https://doi.org/10.1038/srep46705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takemura K, Takizawa E, Tamori A et al (2021) Association of serum autotaxin levels with liver fibrosis in patients pretreatment and posttreatment with chronic hepatitis C. J Gastroenterol Hepatol 36:217–224. https://doi.org/10.1111/jgh.15114

    Article  CAS  PubMed  Google Scholar 

  24. Jansen S, Andries M, Vekemans K et al (2009) Rapid clearance of the circulating metastatic factor autotaxin by the scavenger receptors of liver sinusoidal endothelial cells. Cancer Lett 284:216–221. https://doi.org/10.1016/j.canlet.2009.04.029

    Article  CAS  PubMed  Google Scholar 

  25. Corbacioglu S, Greil J, Peters C et al (2004) Defibrotide in the treatment of children with veno-occlusive disease (VOD): a retrospective multicentre study demonstrates therapeutic efficacy upon early intervention. Bone Marrow Transpl 33:189–195. https://doi.org/10.1038/sj.bmt.1704329

    Article  CAS  Google Scholar 

  26. Bacigalupo A, Ballen K, Rizzo D et al (2009) Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transpl 15:1628–1633. https://doi.org/10.1016/j.bbmt.2009.07.004

    Article  Google Scholar 

  27. Giralt S, Ballen K, Rizzo D et al (2009) Reduced-intensity conditioning Regimen Workshop: defining the dose spectrum. Report of a Workshop convened by the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transpl 15:367–369. https://doi.org/10.1016/j.bbmt.2008.12.497

    Article  Google Scholar 

  28. Armand P, Kim HT, Logan BR et al (2014) Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood 123:3664–3671. https://doi.org/10.1182/blood-2014-01-552984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sorror ML, Maris MB, Storb R et al (2005) Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106:2912–2919. https://doi.org/10.1182/blood-2005-05-2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1:1. https://doi.org/10.1186/1476-5926-1-1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carreras E (2015) How I manage sinusoidal obstruction syndrome after haematopoietic cell transplantation. Brit J Haematol 168:481–491. https://doi.org/10.1111/bjh.13215

    Article  Google Scholar 

  32. Corbacioglu S, Cesaro S, Faraci M et al (2012) Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet 379:1301–1309. https://doi.org/10.1016/s0140-6736(11)61938-7

    Article  CAS  PubMed  Google Scholar 

  33. Dignan FL, Wynn RF, Hadzic N et al (2013) BCSH/BSBMT guideline: diagnosis and management of veno-occlusive disease (sinusoidal obstruction syndrome) following haematopoietic stem cell transplantation. Brit J Haematol 163:444–457. https://doi.org/10.1111/bjh.12558

    Article  CAS  Google Scholar 

  34. Chalandon Y, Mamez A-C, Giannotti F et al (2022) Defibrotide shows efficacy in the Prevention of Sinusoidal obstruction syndrome after allogeneic hematopoietic stem cell transplantation: a retrospective study. Transpl Cell Ther 28. https://doi.org/10.1016/j.jtct.2022.08.003. :765.e1-765.e9

  35. Corbacioglu S, Topaloglu O, Aggarwal S (2022) A systematic review and Meta-analysis of studies of Defibrotide Prophylaxis for Veno-Occlusive Disease/Sinusoidal obstruction syndrome. Clin Drug Invest 42:465–476. https://doi.org/10.1007/s40261-022-01140-y

    Article  CAS  Google Scholar 

  36. Nakai Y, Ikeda H, Nakamura K et al (2011) Specific increase in serum autotaxin activity in patients with pancreatic cancer. Clin Biochem 44:576–581. https://doi.org/10.1016/j.clinbiochem.2011.03.128

    Article  CAS  PubMed  Google Scholar 

  37. Masuda A, Nakamura K, Izutsu K et al (2008) Serum autotaxin measurement in haematological malignancies: a promising marker for follicular lymphoma. Br J Haematol 143:60–70. https://doi.org/10.1111/j.1365-2141.2008.07325.x

    Article  CAS  PubMed  Google Scholar 

  38. Masuda A, Fujii T, Iwasawa Y et al (2011) Serum autotaxin measurements in pregnant women: application for the differentiation of normal pregnancy and pregnancy-induced hypertension. Clin Chim Acta 412:1944–1950. https://doi.org/10.1016/j.cca.2011.06.039

    Article  CAS  PubMed  Google Scholar 

  39. Nakanaga K, Hama K, Aoki J (2010) Autotaxin—an LPA producing enzyme with diverse functions. J Biochem 148:13–24. https://doi.org/10.1093/jb/mvq052

    Article  CAS  PubMed  Google Scholar 

  40. Ikeda H, Kobayashi M, Kumada H et al (2018) Performance of autotaxin as a serum marker of liver fibrosis. Ann Clin Biochem 55:469–477

    Article  CAS  PubMed  Google Scholar 

  41. Benesch MGK, Tang X, Dewald J et al (2015) Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression. Faseb J 29:3990–4000. https://doi.org/10.1096/fj.15-274480

    Article  CAS  PubMed  Google Scholar 

  42. Sumida H, Nakamura K, Yanagida K et al (2013) Decrease in circulating autotaxin by oral administration of prednisolone. Clin Chim Acta 415:74–80. https://doi.org/10.1016/j.cca.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  43. Mohty M, Malard F, Alaskar AS et al (2023) Diagnosis and severity criteria for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a refined classification from the European society for blood and marrow transplantation (EBMT). Bone Marrow Transpl 58:749–754. https://doi.org/10.1038/s41409-023-01992-8

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, for the preparation of serum samples. This work was supported by research funding from Tosoh Corporation.

Funding

We received reagents to measure serum autotaxin and borrowed the AIA-2000 analyzer from Tosoh Corporation (Tokyo, Japan). This study was supported by research funding from Tosoh Corporation.

Author information

Authors and Affiliations

Authors

Contributions

K.T., M.Nakamae, and H.O. conceptualized and designed the study. K.T. and M. Nakamae acquired and analyzed data. K.T., M.Nakamae, H.O., and H.N. interpreted the analysis results. K.T. wrote the original draft manuscript. M.Nakamae, H.O., K.S., K.Ido, Y.M., M.K., T.T., A.H., M.Nishimoto, Y.N., H.Koh, K.Igarashi, H.Kubota, M.H., and H.N. interpreted the results and reviewed critically and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Mika Nakamae.

Ethics declarations

Ethical approval

This study was approved by the Ethics Committee of Osaka City University (the predecessor of Osaka Metropolitan University) Graduate School of Medicine (Approval no. 2020 − 213). This study was conducted in accordance with the ethical principles of the Declaration of Helsinki.

Consent to participate

According to our ethical guidelines and our institutional ethical committee, consent was obtained using an opt-out approach, where we provided information about the research framework and allowed participants to decline participation, rather than obtaining informed consent.

Competing interests

All authors’ potential conflicts of interest in this research area are listed below. Except for Tosoh Corp., no direct funding was received for this research. No assistance with medical writing or data analysis work was received from the following companies. A patent application is pending for the results of this research from our university and Tosoh Cooperation. KT, KS, K Ido, AH and H Kubota have no conflicts of interests in this research area; M Nakamae: research funding from Veritas Corp. and honoraria to spouse (Please refer to HN disclosure); HO: research funding from Takeda Pharmaceutical Co., Ltd., and honoraria from Nippon Shinyaku Co., Ltd. and Asahi Kasei Pharma Corp.; YM: honoraria from Asahi Kasei Pharma Corp.; TT: research funding from Pfizer Japan Inc., Janssen Pharmaceutical K.K., and honoraria from Kyowa Kirin Co., Ltd., Sanofi K.K., Takeda Pharmaceutical Co., Ltd., Chugai Pharmaceutical Co., Ltd., Novartis Pharma K.K. and Janssen Pharmaceutical K.K.; YN: research funding from Astellas Pharma Inc., Chugai Pharmaceutical Co., Ltd., and Novartis Pharma K.K., and honoraria from Novartis Pharma K.K., Janssen Pharmaceutical K.K., Astellas Pharma Inc., Chugai Pharmaceutical Co., Ltd., and Kyowa Kirin Co., Ltd.; H Koh: research funding from Takeda Pharmaceutical Co., Ltd., and honoraria from Asahi Kasei Pharma Corp. and Takeda Pharmaceutical Co., Ltd., Novartis Pharma K.K., Nippon Shinyaku Co., Ltd., and Sumitomo Pharma Co., Ltd.; M.Nishimoto: research funding from Pfizer Japan Inc., and honoraria from Asahi Kasei Pharma Corp., Otsuka Pharmaceutical Co., Ltd., Kyowa Kirin Co., Ltd., Takeda Pharmaceutical Co., Ltd., Nippon Shinyaku Co., Ltd., and Janssen Pharmaceutical K.K.; K Igarashi: Employees of Tosoh Corportion,; MH: research funding from Tosoh Corp., Pfizer Japan Inc., Nippon Shinyaku Co., Ltd., Sekisui Medical Co., Ltd., ARKRAY, Inc. and donation for research from JCR Pharmaceuticals Co., Ltd., Kyowa Kirin Co., Ltd., Daiichi Sankyo Co., Ltd., Chugai Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Asahi Kasei Pharma Corp., Sumitomo Pharma Co., Ltd., and Sekisui Medical Co., Ltd., and honoraria from Asahi Kasei Pharma Corp., Astellas Pharma Inc., Otsuka Pharmaceutical Co., Ltd., Kyowa Kirin Co., Ltd., Sanofi K.K., Takeda Pharmaceutical Co., Ltd., Chugai Pharmaceutical Co., Ltd., Nippon Shinyaku Co., Ltd., Nippon Kayaku Co., Ltd., Novartis Pharma K.K., Janssen Pharmaceutical K.K., Daiichi Sankyo Co., Ltd., Sumitomo Pharma Co., Ltd.; HN: research funding Novartis Pharma K.K., and Takeda Pharmaceutical Co., Ltd., and honoraria from Astellas Pharma Inc, Chugai Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Daiichi Sankyo Co., Ltd., Sumitomo Pharma Co., Ltd., Nippon Shinyaku Co., Ltd., Novartis Pharma, and Janssen Pharmaceutical K.K.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takemura, K., Nakamae, M., Okamura, H. et al. Autotaxin is a potential predictive marker for the development of veno-occlusive disease/sinusoidal obstruction syndrome after allogeneic hematopoietic cell transplantation. Ann Hematol 103, 1705–1715 (2024). https://doi.org/10.1007/s00277-024-05685-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-024-05685-0

Keywords

Navigation