Skip to main content

Advertisement

Log in

Higher expression of programmed cell death 4 (PDCD4) in acute myeloid leukemia is associated with better prognosis after chemotherapy

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Acute myeloid leukemia (AML) is a common heterogeneous malignancy. Novel molecular markers aid diagnosis, patient sub-categorization, and optimal clinical decisions. Here, we explored the prognostic implications associated with the expression of the programmed cell death (PDCD) family of molecules in AML patients. Based on the findings from the TCGA and OHSU cohorts, we observed that the mRNA abundance of PDCD4 is significantly higher compared to other molecules within the PDCD family. Furthermore, high expression of PDCD4 was associated with predicted long-term patient survival in diagnosed AML patients. In the chemotherapy group, patients with high PDCD4 expression showed a tendency toward longer overall survival (OS) (P = 0.0266) and event-free survival (EFS) (P = 0.0008). High PDCD4 levels served as a favorable independent predictor for both OS and EFS in AML patients. However, subgroup analyses in the hematopoietic stem cell transplantation (HSCT) group revealed no significant difference in OS or EFS between individuals with high and low PDCD4 expression. Furthermore, in the low PDCD4 expression group, AML patients who underwent HSCT experienced improved survival outcomes (P = 0.0015), helping to mitigate the unfavorable prognosis associated with PDCD4 downregulation. Conversely, in the high PDCD4 expression group, HSCT offered a notable short-term survival advantage, while patients with high PDCD4 expression responded favorably to long-term survival through chemotherapy. Biological function enrichment showed that the expression of PDCD4 was correlated with complement and coagulation cascades, cell receptor signaling pathways, and cholesterol metabolism. The findings from this study will aid in better categorizing heterogeneous AML patients and guiding more appropriate clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available from The Cancer Genome Atlas (https://portal.gdc.cancer.gov/) and Oregon Health and Science University (https://www.cbioportal.org/).

References

  1. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H et al (2022) Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 140:1345–1377

    Article  PubMed  Google Scholar 

  2. Bottomly D, Long N, Schultz AR, Kurtz SE, Tognon CE, Johnson K et al (2022) Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 40:850-864.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang N, Zhang Y, Zhang P, Lou S, Chen Y, Li H et al (2020) Overexpression of annexin A5 might guide the gemtuzumab ozogamicin treatment choice in patients with pediatric acute myeloid leukemia. Ther Adv Med Oncol 12:1758835920927635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elsayed AH, Cao X, Mitra AK, Wu H, Raimondi S, Cogle C et al (2022) Polygenic Ara-C response score identifies pediatric patients with acute myeloid leukemia in need of chemotherapy augmentation. J Clin Oncol 40:772–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schneider C, Oellerich T, Baldauf H-M, Schwarz S-M, Thomas D, Flick R et al (2017) SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia. Nat Med 23:250–255

    Article  PubMed  Google Scholar 

  6. Zhang N, Shen Y, Li H, Chen Y, Zhang P, Lou S et al (2022) The m6A reader IGF2BP3 promotes acute myeloid leukemia progression by enhancing RCC2 stability. Exp Mol Med 54:194–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malani D, Kumar A, Brück O, Kontro M, Yadav B, Hellesøy M et al (2022) Implementing a functional precision medicine tumor board for acute myeloid leukemia. Cancer Discov 12:388–401

    Article  CAS  PubMed  Google Scholar 

  8. Ghafouri-Fard S, Hussen BM, Mohaqiq M, Shoorei H, Baniahmad A, Taheri M et al (2022) Interplay between non-coding RNAs and programmed cell death proteins. Front Oncol 12:808475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu K, Chen Q, Li M, He L, Riaz F, Zhang T et al (2020) Programmed cell death factor 4 (PDCD4), a novel therapy target for metabolic diseases besides cancer. Free Radic Biol Med 159:150–163

    Article  CAS  PubMed  Google Scholar 

  10. Wang W, Song X-W, Zhao C-H (2016) Roles of programmed cell death protein 5 in inflammation and cancer (Review). Int J Oncol 49:1801–1806

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Zhao K, Wu S, Li C, You C, Wang J et al (2022) The dual role of PDCD10 in cancers: a promising therapeutic target. Cancers (Basel) 14:5986

    Article  CAS  PubMed  Google Scholar 

  12. Zha H, Jiang Y, Wang X, Shang J, Wang N, Yu L et al (2021) Non-canonical PD-1 signaling in cancer and its potential implications in clinic. J Immunother Cancer 9:e001230

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ramos-Casals M, Brahmer JR, Callahan MK, Flores-Chávez A, Keegan N, Khamashta MA et al (2020) Immune-related adverse events of checkpoint inhibitors. Nat Rev Dis Primers 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carlino MS, Larkin J, Long GV (2021) Immune checkpoint inhibitors in melanoma. Lancet 398:1002–1014

    Article  CAS  PubMed  Google Scholar 

  15. Reck M, Remon J, Hellmann MD (2022) First-line immunotherapy for non-small-cell lung cancer. J Clin Oncol 40:586–597

    Article  CAS  PubMed  Google Scholar 

  16. Walshaw RC, Honeychurch J, Illidge TM, Choudhury A (2018) The anti-PD-1 era - an opportunity to enhance radiotherapy for patients with bladder cancer. Nat Rev Urol 15:251–259

    Article  PubMed  Google Scholar 

  17. Alatrash G, Daver N, Mittendorf EA (2016) Targeting immune checkpoints in hematologic malignancies. Pharmacol Rev 68:1014–1025

    Article  CAS  PubMed  Google Scholar 

  18. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ et al (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368:2059–2074

    Article  Google Scholar 

  19. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL et al (2018) Functional genomic landscape of acute myeloid leukaemia. Nature 562:526–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23:257–258

    Article  CAS  PubMed  Google Scholar 

  21. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  CAS  PubMed  Google Scholar 

  22. Liao D, Wang M, Liao Y, Li J, Niu T (2019) A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol 10:609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bewersdorf JP, Stahl M, Zeidan AM (2019) Immune checkpoint-based therapy in myeloid malignancies: a promise yet to be fulfilled. Expert Rev Anticancer Ther 19:393–404

    Article  CAS  PubMed  Google Scholar 

  24. Zhang N, Wu J, Wang Q, Liang Y, Li X, Chen G et al (2023) Global burden of hematologic malignancies and evolution patterns over the past 30 years. Blood Cancer J 13:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song M-K, Park B-B, Uhm J-E (2021) Targeted therapeutic approach based on understanding of aberrant molecular pathways leading to leukemic proliferation in patients with acute myeloid leukemia. Int J Mol Sci 22:5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. An Y, Hu Y, Li X, Li Z, Duan J, Yang X-D (2019) Selection of a novel DNA aptamer against OFA/iLRP for targeted delivery of doxorubicin to AML cells. Sci Rep 9:7343

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kawase T, Nakazawa T, Eguchi T, Tsuzuki H, Ueno Y, Amano Y et al (2019) Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget 10:6111–6123

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kantarjian HM, Short NJ, Fathi AT, Marcucci G, Ravandi F, Tallman M et al (2021) Acute myeloid leukemia: historical perspective and progress in research and therapy over 5 decades. Clin Lymphoma Myeloma Leuk 21:580–597

    Article  CAS  PubMed  Google Scholar 

  29. Zhang N, Chen Y, Lou S, Shen Y, Deng J (2019) A six-gene-based prognostic model predicts complete remission and overall survival in childhood acute myeloid leukemia. Onco Targets Ther 12:6591–6604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu J, Hong M, Li Y, Chen D, Wu Y, Hu Y (2022) Programmed cell death tunes tumor immunity. Front Immunol 13:847345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kari S, Subramanian K, Altomonte IA, Murugesan A, Yli-Harja O, Kandhavelu M (2022) Programmed cell death detection methods: a systematic review and a categorical comparison. Apoptosis 27:482–508

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ghafouri-Fard S, Hussen BM, Mohaqiq M, Shoorei H, Baniahmad A, Taheri M et al (2022) Interplay between non-coding RNAs and programmed cell death proteins. Front Oncol 12:808475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu K, Fei W, Huo Z, Wang S, Li Y, Yang G et al (2023) PDCD10 promotes proliferation, migration, and invasion of osteosarcoma by inhibiting apoptosis and activating EMT pathway. Cancer Med 12:1673–1684

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Xing J, Tang X, Sheng X, Chi H, Zhan W (2020) Interleukin-2 (IL-2) interacts with IL-2 receptor beta (IL-2Rβ): its potential to enhance the proliferation of CD4+ T lymphocytes in flounder (Paralichthys olivaceus). Front Immunol 11:531785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liao D, Wang M, Liao Y, Li J, Niu T (2019) A review of efficacy and safety of checkpoint inhibitor for the treatment of acute myeloid leukemia. Front Pharmacol 10:609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou H, Shi P, Jia X, Xue Q (2021) Long non-coding RNA LINC01018 inhibits the progression of acute myeloid leukemia by targeting miR-499a-5p to regulate PDCD4. Oncol Lett 22:541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianchuan Deng or Kang Zhou.

Ethics declarations

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hongwei Tang and Ying Chen have contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2.19 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Chen, Y., Zhang, N. et al. Higher expression of programmed cell death 4 (PDCD4) in acute myeloid leukemia is associated with better prognosis after chemotherapy. Ann Hematol 102, 3401–3412 (2023). https://doi.org/10.1007/s00277-023-05516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05516-8

Keywords

Navigation