Skip to main content

Advertisement

Log in

miR-603 promotes cell proliferation and differentiation by targeting TrkB in acute promyelocytic leukemia

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Arsenic trioxide (ATO) treatment effectively prolongs the overall survival of patients with acute promyelocytic leukemia (APL). Mutations in the oncogene PML::RARA were found in patients with ATO-resistant and relapsed APL. However, some relapsed patients do not have such mutations. Here, we performed microarray analysis of samples from newly diagnosed and relapsed APL, and found different microRNA (miRNA) expression patterns between these two groups. Among the differentially expressed miRNAs, miR-603 was expressed at the lowest level in relapsed patients. The expression of miR-603 and its predicted target tropomyosin-related kinase B (TrkB) were determined by PCR and Western blot. Proliferation was measured using an MTT assay, while apoptosis, cell cycle and CD11b expression were analyzed using flow cytometry. In APL patients, the expression of miR-603 was negatively correlated with that of TrkB. miR-603 directly targeted TrkB and downregulated TrkB expression in the APL cell line NB4. miR-603 increased cell proliferation by promoting the differentiation and inhibiting the apoptosis of NB4 cells. This study shows that the miR-603/ TrkB axis may be a potent therapeutic target for relapsed APL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data are available from the corresponding author on reasonable request.

References

  1. Mistry AR, Pedersen EW, Solomon E, Grimwade D (2003) The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev 17(2):71–97

    Article  PubMed  Google Scholar 

  2. Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111(5):2505–2515

    Article  CAS  PubMed  Google Scholar 

  3. Coombs CC, Tavakkoli M, Tallman MS (2015) Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J 5(4):e304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carbone R, Botrugno OA, Ronzoni S, Insinga A, Di Croce L, Pelicci PG, Minucci S (2006) Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol 26(4):1288–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hoemme C, Peerzada A, Behre G, Wang Y, McClelland M, Nieselt K, Zschunke M, Disselhoff C, Agrawal S, Isken F et al (2008) Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood 111(5):2887–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    Article  CAS  PubMed  Google Scholar 

  8. Havelange V, Garzon R, Croce CM (2009) MicroRNAs: new players in acute myeloid leukaemia. Br J Cancer 101(5):743–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5):819–831

    Article  CAS  PubMed  Google Scholar 

  10. Pulikkan JA, Dengler V, Peramangalam PS, Peer Zada AA, Müller-Tidow C, Bohlander SK, Tenen DG, Behre G (2010) Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 115(9):1768–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pulikkan JA, Peramangalam PS, Dengler V, Ho PA, Preudhomme C, Meshinchi S, Christopeit M, Nibourel O, Müller-Tidow C, Bohlander SK et al (2010) C/EBPα regulated microRNA-34a targets E2F3 during granulopoiesis and is down-regulated in AML with CEBPA mutations. Blood 116(25):5638–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Katzerke C, Madan V, Gerloff D, Bräuer-Hartmann D, Hartmann JU, Wurm AA, Müller-Tidow C, Schnittger S, Tenen DG, Niederwieser D et al (2013) Transcription factor C/EBPα-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 122(14):2433–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, Wang H, Sun H, Volinia S, Alder H et al (2007) MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26(28):4148–4157

    Article  CAS  PubMed  Google Scholar 

  14. Serafim Junior V, Fernandes GMM, Oliveira-Cucolo JG, Pavarino EC, Goloni-Bertollo EM (2020) Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine 136:155270

    Article  CAS  PubMed  Google Scholar 

  15. Malekan M, Nezamabadi SS, Samami E, Mohebalizadeh M, Saghazadeh A, Rezaei N (2023) BDNF and its signaling in cancer. J Cancer Res Clin Oncol 149(6):2621–2636

  16. Maroder M, Bellavia D, Meco D, Napolitano M, Stigliano A, Alesse E, Vacca A, Giannini G, Frati L, Gulino A et al (1996) Expression of trKB neurotrophin receptor during T cell development. Role of brain derived neurotrophic factor in immature thymocyte survival. J Immunol 157(7):2864–2872

    Article  CAS  PubMed  Google Scholar 

  17. Abbaci A, Talbot H, Saada S, Gachard N, Abraham J, Jaccard A, Bordessoule D, Fauchais AL, Naves T, Jauberteau MO (2018) Neurotensin receptor type 2 protects B-cell chronic lymphocytic leukemia cells from apoptosis. Oncogene 37(6):756–767

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Beutel G, Rhein M, Meyer J, Koenecke C, Neumann T, Yang M, Krauter J, von Neuhoff N, Heuser M et al (2009) High-affinity neurotrophin receptors and ligands promote leukemogenesis. Blood 113(9):2028–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo M, Zhang X, Wang G, Sun J, Jiang Z, Khadarian K, Yu S, Zhao Y, Xie C, Zhang K et al (2015) miR-603 promotes glioma cell growth via Wnt/β-catenin pathway by inhibiting WIF1 and CTNNBIP1. Cancer Lett 360(1):76–86

    Article  CAS  PubMed  Google Scholar 

  20. Sell SL, Widen SG, Prough DS, Hellmich HL (2020) Principal component analysis of blood microRNA datasets facilitates diagnosis of diverse diseases. PLoS ONE 15(6):e0234185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cocco E, Scaltriti M, Drilon A (2018) NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol 15(12):731–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuzugullu H, Von T, Thorpe LM, Walker SR, Roberts TM, Frank DA, Zhao JJ (2016) NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways. Cell Discov 2:16030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Zhu HH, Jiang H, Jiang Q, Huang XJ (2016) Varying responses of PML-RARA with different genetic mutations to arsenic trioxide. Blood 127(2):243–250

    Article  CAS  PubMed  Google Scholar 

  24. Lehmann-Che J, Bally C, de Thé H (2014) Resistance to therapy in acute promyelocytic leukemia. N Engl J Med 371(12):1170–1172

    Article  PubMed  Google Scholar 

  25. Zhu HH, Qin YZ, Huang XJ (2014) Resistance to arsenic therapy in acute promyelocytic leukemia. N Engl J Med 370(19):1864–1866

    Article  CAS  PubMed  Google Scholar 

  26. Madan V, Shyamsunder P, Han L, Mayakonda A, Nagata Y, Sundaresan J, Kanojia D, Yoshida K, Ganesan S, Hattori N et al (2016) Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 30(12):2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Careccia S, Mainardi S, Pelosi A, Gurtner A, Diverio D, Riccioni R, Testa U, Pelosi E, Piaggio G, Sacchi A et al (2009) A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes. Oncogene 28(45):4034–4040

    Article  CAS  PubMed  Google Scholar 

  28. Zamani A, Fattahi Dolatabadi N, Houshmand M, Nabavizadeh N (2021) miR-324-3p and miR-508-5p expression levels could serve as potential diagnostic and multidrug-resistant biomarkers in childhood acute lymphoblastic leukemia. Leuk Res 109:106643

    Article  CAS  PubMed  Google Scholar 

  29. Cao Y, Liu Y, Shang L, Chen H, Yue Y, Dong W, Guo Y, Yang H, Yang X, Gu W et al (2022) Overexpression of miR-17 predicts adverse prognosis and disease recurrence for acute myeloid leukemia. Int J Clin Oncol 27(7):1222–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang TJ, Lin J, Zhou JD, Li XX, Zhang W, Guo H, Xu ZJ, Yan Y, Ma JC, Qian J (2018) High bone marrow miR-19b level predicts poor prognosis and disease recurrence in de novo acute myeloid leukemia. Gene 640:79–85

    Article  CAS  PubMed  Google Scholar 

  31. Wang F, Li J, Li L, Chen Z, Wang N, Zhu M, Mi H, Xiong Y, Guo G, Gu Y (2022) Circular RNA circ_IRAK3 contributes to tumor growth through upregulating KIF2A via adsorbing miR-603 in breast cancer. Cancer Cell Int 22(1):81

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ma C, Zhan C, Yuan H, Cui Y, Zhang Z (2016) MicroRNA-603 functions as an oncogene by suppressing BRCC2 protein translation in osteosarcoma. Oncol Rep 35(6):3257–3264

    Article  CAS  PubMed  Google Scholar 

  33. Lin YX, Wu XB, Zheng CW, Zhang QL, Zhang GQ, Chen K, Zhan Q, An FM (2021) Mechanistic Investigation on the Regulation of FABP1 by the IL-6/miR-603 Signaling in the Pathogenesis of Hepatocellular Carcinoma. Biomed Res Int 2021:8579658

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yin B, Ma ZY, Zhou ZW, Gao WC, Du ZG, Zhao ZH, Li QQ (2015) The TrkB+ cancer stem cells contribute to post-chemotherapy recurrence of triple-negative breast cancers in an orthotopic mouse model. Oncogene 34(6):761–770

    Article  CAS  PubMed  Google Scholar 

  35. Bao L, Wang YT, Lu MQ, Shi L, Chu B, Gao S (2023) BDNF/TrkB confers bortezomib resistance in multiple myeloma by inducing BRINP3. Biochim Biophys Acta Gen Subj 1867(3):130299

    Article  CAS  PubMed  Google Scholar 

  36. Chendamarai E, Ganesan S, Alex AA, Kamath V, Nair SC, Nellickal AJ, Janet NB, Srivastava V, Lakshmi KM, Viswabandya A et al (2015) Comparison of newly diagnosed and relapsed patients with acute promyelocytic leukemia treated with arsenic trioxide: insight into mechanisms of resistance. PLoS ONE 10(3):e0121912

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang T, Li J, Zhuo Z, Zeng H, Tan T, Miao L, Zheng M, Yang J, Pan J, Hu C et al (2022) TTF1 suppresses neuroblastoma growth and induces neuroblastoma differentiation by targeting TrkA and the miR-204/TrkB axis. iScience 25(7):104655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takahashi S (2021) Current Understandings of Myeloid Differentiation Inducers in Leukemia Therapy. Acta Haematol 144(4):380–388

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi S (2022) Kinase Inhibitors and Interferons as Other Myeloid Differentiation Inducers in Leukemia Therapy. Acta Haematol 145(2):113–121

    Article  CAS  PubMed  Google Scholar 

  40. Villiers W, Kelly A, He XH, Kaufman-Cook J, Elbasir A, Bensmail H, Lavender P, Dillon R, Mifsud B, Osborne C (2023) Multi-omics and machine learning reveal context-specific gene regulatory activities of PML::RARA in acute promyelocytic leukemia. Nat Commun 14(1):724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (81903966) and the Science Foundation of the First Affiliated Hospital of Harbin Medical University (2021M02).

Author information

Authors and Affiliations

Authors

Contributions

Huibo Li conceived, carried out experiments and wrote the paper; Jinxiao Hou analyzed data; Yueyue Fu and Yanqiu Zhao carried out experiments and analyzed the data; Jie Liu and Dan Guo performed the experiments; Ruiqi Lei, Yiting Wu and Linqing Tang performed the experiments. Shengjin Fan conceived the experiments and revised the paper. All authors gave final approval of the submitted and published versions.

Corresponding author

Correspondence to Shengjin Fan.

Ethics declarations

Ethics approval

All experimental procedures were approved by the First Affiliated Hospital, Harbin Medical University.

Competing interests

The authors declare no competing interests.

Conflict of interest

None of the authors have any financial interest related to this work and therefore declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Hou, J., Fu, Y. et al. miR-603 promotes cell proliferation and differentiation by targeting TrkB in acute promyelocytic leukemia. Ann Hematol 102, 3357–3367 (2023). https://doi.org/10.1007/s00277-023-05441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05441-w

Keywords

Navigation