Skip to main content
Log in

Altered serum lipid levels are associated with prognosis of diffuse large B cell lymphoma and influenced by utility of rituximab

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, and the prognosis of the disease varied. This research aims to investigate the impact of serum lipid level on the outcome of DLBCL patients and their interaction with rituximab (RTX). Data of newly diagnosed DLBCL in the third affiliated hospital of Soochow University were retrospectively collected. Baseline serum lipid levels, clinical data, and survival information were simultaneously recorded. Data of healthy controls were collected with age matching. Serum lipid levels significantly differed for the patients. All were transformed into categorical variables for the analysis of survival. During a median follow-up of 58 months, 32.8% patients died. Univariate analysis revealed all serum lipid indicators were associated with overall survival (OS); all except for total cholesterol (TC) and apolipoprotein B (apoB) showed significant impact on progression-free survival (PFS). Multivariable analysis confirmed the adverse effect of triglyceride (TG) on PFS (P = 0.013) and favorable impact of high-density lipoprotein (HDL) on OS (P = 0.003). For cases treated without RTX, apolipoprotein A (apoA) had independent favorable effect on both PFS (P = 0.004) and OS (P = 0.001). Comparably, for patients who received RTX, HDL showed remarkably predictive value of PFS (P = 0.011) and OS (P = 0.019). In conclusion, the abnormal serum lipids occurred throughout the course of DLBCL, and the associations of serum lipids and the prognosis of the disease were interfered by RTX. Trial registration: 2022(科)CL033; June 26, 2022, retrospectively registered

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, Jemal A, Kramer JL, Siegel RL (2019) Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin 69(5):363–385. https://doi.org/10.3322/caac.21565

    Article  Google Scholar 

  2. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD, Jaffe ES (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390. https://doi.org/10.1182/blood-2016-01-643569

    Article  CAS  Google Scholar 

  3. Coiffier B, Thieblemont C, Van Den Neste E, Lepeu G, Plantier I, Castaigne S, Lefort S, Marit G, Macro M, Sebban C, Belhadj K, Bordessoule D, Fermé C, Tilly H (2010) Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte. Blood 116(12):2040–2045. https://doi.org/10.1182/blood-2010-03-276246

    Article  CAS  Google Scholar 

  4. Harris LJ, Patel K, Martin M (2020) Novel therapies for relapsed or refractory diffuse large B-cell lymphoma. Int J Mol Sci 21(22):8553. https://doi.org/10.3390/ijms21228553

    Article  CAS  Google Scholar 

  5. Gisselbrecht C, Van Den Neste E (2018) How I manage patients with relapsed/refractory diffuse large B cell lymphoma. Br J Haematol 182(5):633–643. https://doi.org/10.1111/bjh.15412

    Article  Google Scholar 

  6. Crump M, Neelapu SS, Farooq U, Van Den Neste E, Kuruvilla J, Westin J, Link BK, Hay A, Cerhan JR, Zhu L, Boussetta S, Feng L, Maurer MJ, Navale L, Wiezorek J, Go WY, Gisselbrecht C (2017) Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood 130(16):1800–1808. https://doi.org/10.1182/blood-2017-03-769620

    Article  CAS  Google Scholar 

  7. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9

    Article  CAS  Google Scholar 

  8. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314. https://doi.org/10.1126/science.123.3191.309

    Article  CAS  Google Scholar 

  9. Baenke F, Peck B, Miess H, Schulze A (2013) Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 6(6):1353–1363. https://doi.org/10.1242/dmm.011338

    Article  CAS  Google Scholar 

  10. Kuhajda FP (2000) Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology. Nutrition 16(3):202–208. https://doi.org/10.1016/s0899-9007(99)00266-x

    Article  CAS  Google Scholar 

  11. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7(10):763–777. https://doi.org/10.1038/nrc2222

    Article  CAS  Google Scholar 

  12. Maier T, Jenni S, Ban N (2006) Architecture of mammalian fatty acid synthase at 4.5 A resolution. Science 311(5765):1258–1262. https://doi.org/10.1126/science.1123248

    Article  CAS  Google Scholar 

  13. Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66(12):5977–5980. https://doi.org/10.1158/0008-5472.CAN-05-4673

    Article  CAS  Google Scholar 

  14. Gansler TS, Hardman W 3rd, Hunt DA, Schaffel S, Hennigar RA (1997) Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol 28(6):686–692. https://doi.org/10.1016/s0046-8177(97)90177-5

    Article  CAS  Google Scholar 

  15. Sebastiani V, Visca P, Botti C, Santeusanio G, Galati GM, Piccini V, Capezzone de Joannon B, Di Tondo U, Alo PL (2004) Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma. Gynecol Oncol 92(1):101–105. https://doi.org/10.1016/j.ygyno.2003.10.027

    Article  CAS  Google Scholar 

  16. Khan W, Augustine D, Rao RS, Patil S, Awan KH, Sowmya SV, Haragannavar VC, Prasad K (2021) Lipid metabolism in cancer: a systematic review. J Carcinog 20:4. https://doi.org/10.4103/jcar.JCar_15_20

    Article  CAS  Google Scholar 

  17. Santos CR, Schulze A (2012) Lipid metabolism in cancer. FEBS J 279(15):2610–2623. https://doi.org/10.1111/j.1742-4658.2012.08644.x

    Article  CAS  Google Scholar 

  18. Bhatt AP, Jacobs SR, Freemerman AJ, Makowski L, Rathmell JC, Dittmer DP, Damania B (2012) Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma. Proc Natl Acad Sci U S A 109(29):11818–11823. https://doi.org/10.1073/pnas.1205995109

    Article  Google Scholar 

  19. Horn H, Ziepert M, Wartenberg M, Staiger AM, Barth TF, Bernd HW, Feller AC, Klapper W, Stuhlmann-Laeisz C, Hummel M, Stein H, Lenze D, Hartmann S, Hansmann ML, Möller P, Cogliatti S, Pfreundschuh M, Trümper L, Loeffler M et al (2015) Different biological risk factors in young poor-prognosis and elderly patients with diffuse large B-cell lymphoma. Leukemia 29(7):1564–1570. https://doi.org/10.1038/leu.2015.43

    Article  CAS  Google Scholar 

  20. Liu YC, Li F, Handler J, Huang CR, Xiang Y, Neretti N, Sedivy JM, Zeller KI, Dang CV (2008) Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS One 3(7):e2722. https://doi.org/10.1371/journal.pone.0002722

    Article  CAS  Google Scholar 

  21. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458(7239):762–765. https://doi.org/10.1038/nature07823

    Article  CAS  Google Scholar 

  22. Broecker-Preuss M, Becher-Boveleth N, Bockisch A, Dührsen U, Müller S (2017) Regulation of glucose uptake in lymphoma cell lines by c-MYC- and PI3K-dependent signaling pathways and impact of glycolytic pathways on cell viability. J Transl Med 15(1):158. https://doi.org/10.1186/s12967-017-1258-9

    Article  CAS  Google Scholar 

  23. Eberlin LS, Gabay M, Fan AC, Gouw AM, Tibshirani RJ, Felsher DW, Zare RN (2014) Alteration of the lipid profile in lymphomas induced by MYC overexpression. Proc Natl Acad Sci U S A 111(29):10450–10455. https://doi.org/10.1073/pnas.1409778111

    Article  CAS  Google Scholar 

  24. Singh A, Nandwana V, Rink JS, Ryoo SR, Chen TH, Allen SD, Scott EA, Gordon LI, Thaxton CS, Dravid VP (2019) Biomimetic magnetic nanostructures: a theranostic platform targeting lipid metabolism and immune response in lymphoma. ACS Nano 13(9):10301–10311. https://doi.org/10.1021/acsnano.9b03727

    Article  CAS  Google Scholar 

  25. Sherwin RW, Wentworth DN, Cutler JA, Hulley SB, Kuller LH, Stamler J (1987) Serum cholesterol levels and cancer mortality in 361,662 men screened for the Multiple Risk Factor Intervention Trial. JAMA 257(7):943–948

    Article  CAS  Google Scholar 

  26. Kim J, Kim MK, Baek KH, Song KH, Han K, Kwon HS (2022) Repeated low high-density lipoprotein cholesterol and the risk of thyroid cancer: a nationwide population- based study in Korea. Endocrinol Metab (Seoul) 37(2):303–311. https://doi.org/10.3803/EnM.2021.1332

    Article  CAS  Google Scholar 

  27. van Duijnhoven FJ, Bueno-De-Mesquita HB, Calligaro M, Jenab M, Pischon T, Jansen EH, Frohlich J, Ayyobi A, Overvad K, Toft-Petersen AP, Tjonneland A, Hansen L, Boutron-Ruault MC, Clavel-Chapelon F, Cottet V, Palli D, Tagliabue G, Panico S, Tumino R et al (2011) Blood lipid and lipoprotein concentrations and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Gut 60(8):1094–1102. https://doi.org/10.1136/gut.2010.225011

    Article  CAS  Google Scholar 

  28. Zhou P, Li B, Liu B, Chen T, Xiao J (2018) Prognostic role of serum total cholesterol and high-density lipoprotein cholesterol in cancer survivors: a systematic review and meta-analysis. Clin Chim Acta 477:94–104. https://doi.org/10.1016/j.cca.2017.11.039

    Article  CAS  Google Scholar 

  29. Chang H, Wei JW, Chen K, Zhang S, Han F, Lu LX, Xiao WW, Gao YH (2018) Apolipoprotein A-I is a prognosticator of nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy. J Cancer 9(4):702–710. https://doi.org/10.7150/jca.22836

    Article  CAS  Google Scholar 

  30. Quan Q, Huang Y, Chen Q, Qiu H, Hu Q, Rong Y, Li T, Xia L, Zhang B (2017) Impact of serum apolipoprotein A-I on prognosis and bevacizumab efficacy in patients with metastatic colorectal cancer: a propensity score-matched analysis. Transl Oncol 10(2):288–294. https://doi.org/10.1016/j.tranon.2017.01.006

    Article  Google Scholar 

  31. Pakzad R, Safiri S (2017) The effect of preoperative serum triglycerides and high-density lipoprotein-cholesterol levels on the prognosis of breast cancer: methodological issue. Breast 36:103–104. https://doi.org/10.1016/j.breast.2017.01.014

    Article  Google Scholar 

  32. Spiegel RJ, Schaefer EJ, Magrath IT, Edwards BK (1982) Plasma lipid alterations in leukemia and lymphoma. Am J Med 72(5):775–782. https://doi.org/10.1016/0002-9343(82)90543-5

    Article  CAS  Google Scholar 

  33. Matsuo T, Tashiro H, Shirasaki R, Sumiyoshi R, Yamamoto T, Saito S, Matsumoto K, Ooi J, Shirafuji N (2022) Serum high-density lipoprotein cholesterol level has a significant prognostic impact on outcomes of follicular lymphoma patients. Medicine (Baltimore) 101(30):e29541. https://doi.org/10.1097/MD.0000000000029541

    Article  CAS  Google Scholar 

  34. Alford SH, Divine G, Chao C, Habel LA, Janakiraman N, Wang Y, Feigelson HS, Scholes D, Roblin D, Epstein MM, Engel L, Havstad S, Wells K, Yood MU, Fortuny J, Johnson CC (2018) Serum cholesterol trajectories in the 10 years prior to lymphoma diagnosis. Cancer causes & control : CCC 29(1):143–156. https://doi.org/10.1007/s10552-017-0987-7

    Article  Google Scholar 

  35. Ikonen E (2008) Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9(2):125–138. https://doi.org/10.1038/nrm2336

    Article  CAS  Google Scholar 

  36. Strasak AM, Pfeiffer RM, Brant LJ, Rapp K, Hilbe W, Oberaigner W, Lang S, Borena W, Concin H, Diem G, Ruttmann E, Glodny B, Pfeiffer KP, Ulmer H (2009) Time-dependent association of total serum cholesterol and cancer incidence in a cohort of 172,210 men and women: a prospective 19-year follow-up study. Ann Oncol 20(6):1113–1120. https://doi.org/10.1093/annonc/mdn736

    Article  CAS  Google Scholar 

  37. Allott EH, Howard LE, Cooperberg MR, Kane CJ, Aronson WJ, Terris MK, Amling CL, Freedland SJ (2014) Serum lipid profile and risk of prostate cancer recurrence: results from the SEARCH database. Cancer Epidemiol Biomarkers Prev 23(11):2349–2356. https://doi.org/10.1158/1055-9965.Epi-14-0458

    Article  CAS  Google Scholar 

  38. Cardwell CR, Hicks BM, Hughes C, Murray LJ (2014) Statin use after colorectal cancer diagnosis and survival: a population-based cohort study. J Clin Oncol 32(28):3177–3183. https://doi.org/10.1200/jco.2013.54.4569

    Article  Google Scholar 

  39. Nielsen SF, Nordestgaard BG, Bojesen SE (2012) Statin use and reduced cancer-related mortality. N Engl J Med 367(19):1792–1802. https://doi.org/10.1056/NEJMoa1201735

    Article  CAS  Google Scholar 

  40. Pernes G, Flynn MC, Lancaster GI, Murphy AJ (2019) Fat for fuel: lipid metabolism in haematopoiesis. Clin Transl Immunology 8(12):e1098. https://doi.org/10.1002/cti2.1098

    Article  Google Scholar 

  41. Kuliszkiewicz-Janus M, Małecki R, Mohamed AS (2008) Lipid changes occuring in the course of hematological cancers. Cell Mol Biol Lett 13(3):465–474. https://doi.org/10.2478/s11658-008-0014-9

    Article  CAS  Google Scholar 

  42. Nagel G, Stocks T, Späth D, Hjartåker A, Lindkvist B, Hallmans G, Jonsson H, Bjørge T, Manjer J, Häggström C, Engeland A, Ulmer H, Selmer R, Concin H, Stattin P, Schlenk RF (2012) Metabolic factors and blood cancers among 578,000 adults in the metabolic syndrome and cancer project (Me-Can). Ann Hematol 91(10):1519–1531. https://doi.org/10.1007/s00277-012-1489-z

    Article  CAS  Google Scholar 

  43. Jeong SM, Choi T, Kim D, Han K, Kim SJ, Rhee SY, Giovannucci EL, Shin DW (2021) Association between high-density lipoprotein cholesterol level and risk of hematologic malignancy. Leukemia 35(5):1356–1364. https://doi.org/10.1038/s41375-020-01081-5

    Article  CAS  Google Scholar 

  44. Lim U, Gayles T, Katki HA, Stolzenberg-Solomon R, Weinstein SJ, Pietinen P, Taylor PR, Virtamo J, Albanes D (2007) Serum high-density lipoprotein cholesterol and risk of non-Hodgkin lymphoma. Cancer Res 67(11):5569–5574. https://doi.org/10.1158/0008-5472.Can-07-0212

    Article  CAS  Google Scholar 

  45. Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, Uchida K, O'Connor OA, Stockwell BR (2019) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 26(5):623–633.e629. https://doi.org/10.1016/j.chembiol.2019.01.008

    Article  CAS  Google Scholar 

  46. Hsue PY, Scherzer R, Grunfeld C, Imboden J, Wu Y, Del Puerto G, Nitta E, Shigenaga J, Schnell Heringer A, Ganz P, Graf J (2014) Depletion of B-cells with rituximab improves endothelial function and reduces inflammation among individuals with rheumatoid arthritis. J Am Heart Assoc 3(5):e001267. https://doi.org/10.1161/JAHA.114.001267

    Article  CAS  Google Scholar 

  47. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18(2):153–161. https://doi.org/10.1016/j.cmet.2013.05.017

    Article  CAS  Google Scholar 

  48. Chen L, Monti S, Juszczynski P, Ouyang J, Chapuy B, Neuberg D, Doench JG, Bogusz AM, Habermann TM, Dogan A, Witzig TE, Kutok JL, Rodig SJ, Golub T, Shipp MA (2013) SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 23(6):826–838. https://doi.org/10.1016/j.ccr.2013.05.002

    Article  CAS  Google Scholar 

  49. Benakanakere I, Johnson T, Sleightholm R, Villeda V, Arya M, Bobba R, Freter C, Huang C (2014) Targeting cholesterol synthesis increases chemoimmuno-sensitivity in chronic lymphocytic leukemia cells. Exp Hematol Oncol 3:24. https://doi.org/10.1186/2162-3619-3-24

    Article  CAS  Google Scholar 

  50. Unruh TL, Li H, Mutch CM, Shariat N, Grigoriou L, Sanyal R, Brown CB, Deans JP (2005) Cholesterol depletion inhibits src family kinase-dependent calcium mobilization and apoptosis induced by rituximab crosslinking. Immunology 116(2):223–232. https://doi.org/10.1111/j.1365-2567.2005.02213.x

    Article  CAS  Google Scholar 

  51. Winiarska M, Bil J, Wilczek E, Wilczynski GM, Lekka M, Engelberts PJ, Mackus WJ, Gorska E, Bojarski L, Stoklosa T, Nowis D, Kurzaj Z, Makowski M, Glodkowska E, Issat T, Mrowka P, Lasek W, Dabrowska-Iwanicka A, Basak GW et al (2008) Statins impair antitumor effects of rituximab by inducing conformational changes of CD20. PLoS Med 5(3):e64. https://doi.org/10.1371/journal.pmed.0050064

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by funding from the key project of Jiangsu Province Health Committee (ZD2021043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiying Gu.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of the Third Affiliated Hospital of Soochow University

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Lu, L., Chen, H. et al. Altered serum lipid levels are associated with prognosis of diffuse large B cell lymphoma and influenced by utility of rituximab. Ann Hematol 102, 393–402 (2023). https://doi.org/10.1007/s00277-023-05092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05092-x

Keywords

Navigation