Skip to main content

Advertisement

Log in

Minimal residual disease detection in multiple myeloma: comparison between BML single-tube 10-color multiparameter flow cytometry and EuroFlow multiparameter flow cytometry

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Minimal residual disease (MRD)-negative status in multiple myeloma (MM) is associated with favorable outcomes. Although EuroFlow next-generation flow (NGF) is a global standard for MRD detection, its operating cost is high. Therefore, it is desirable to develop a less expensive method with equivalent sensitivity to that of EuroFlow-NGF. In this study, we compared the analytical ability of our BML 10-color multiparameter flow cytometry (MFC) to that of EuroFlow-NGF. Bone marrow samples collected from 51 patients with MM were subjected to MRD detection using BML 10-color-MFC and EuroFlow-NGF. Our antibody panel consisted of CD38 multiepitope, CD138, CD45, CD56, CD19, CD27, CD81, CD117, cytoplasmic immunoglobulin (cIg) κ, and cIgλ in a single tube. The median percentages of total plasma cells, as per 10-color-MFC and EuroFlow-NGF, were 0.2148% and 0.2200%, respectively, with a good correlation between the methods (r = 0.950). The median percentages of myeloma cells determined via 10-color-MFC and EuroFlow-NGF were 0.0012% and 0.0007%, respectively, with a strong correlation (r = 0.954). Our 10-color-MFC demonstrated high sensitivity to detect MRD; the results showed a good correlation with those obtained using EuroFlow-NGF. Therefore, our cost-effective single-tube MFC (approximately 100 USD/sample) is a promising alternative method for the detection of MRD in patients with MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Landgren O, Iskander K (2017) Modern multiple myeloma therapy: deep, sustained treatment response and good clinical outcomes. J Intern Med 281:365–382. https://doi.org/10.1111/joim.12590

    Article  CAS  PubMed  Google Scholar 

  2. Ravi P, Kumar SK, Cerhan JR, Maurer MJ, Dingli D, Ansell SM, Rajkumar SV (2018) Defining cure in multiple myeloma: a comparative study of outcomes of young individuals with myeloma and curable hematologic malignancies. Blood Cancer J 8:26. https://doi.org/10.1038/s41408-018-0065-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ozaki S, Handa H, Saitoh T, Murakami H, Itagaki M, Asaoku H, Suzuki K, Isoda A, Matsumoto M, Sawamura M, Konishi J, Sunami K, Takezako N, Hagiwara S, Kuroda Y, Chou T, Nagura E, Shimizu K (2015) Trends of survival in patients with multiple myeloma in Japan: a multicenter retrospective collaborative study of the Japanese society of myeloma. Blood Cancer J 5:e349. https://doi.org/10.1038/bcj.2015.79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gagelmann N, Riecken K, Wolschke C, Berger C, Ayuk FA, Fehse B, Kröger N (2020) Development of CAR-T cell therapies for multiple myeloma. Leukemia 34:2317–2332. https://doi.org/10.1038/s41375-020-0930-x

    Article  CAS  PubMed  Google Scholar 

  5. Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C, Krönke J, Facon T, Salnikov AV, Lesley R, Beutner K, Kalabus J, Rasmussen E, Riemann K, Minella AC, Munzert G, Einsele H (2020) Anti-B-cell maturation antigen BiTE molecule AMG 420 induces responses in multiple myeloma. J Clin Oncol 38:775–783. https://doi.org/10.1200/JCO.19.02657

    Article  CAS  PubMed  Google Scholar 

  6. Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, Chari A, Abdallah AO, Callander N, Lendvai N, Sborov D, Suvannasankha A, Weisel K, Karlin L, Libby E, Arnulf B, Facon T, Hulin C, Kortüm KM, Rodríguez-Otero P et al (2020) Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol 21:207–221. https://doi.org/10.1016/S1470-2045(19)30788-0

    Article  CAS  PubMed  Google Scholar 

  7. Landgren O, Devlin S, Boulad M, Mailankody S (2016) Role of MRD status in relation to clinical outcomes in newly diagnosed multiple myeloma patients: a meta-analysis. Bone Marrow Transplant 51:1565–1568. https://doi.org/10.1038/bmt.2016.222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lahuerta JJ, Paiva B, Vidriales MB, Cordón L, Cedena MT, Puig N, Martinez-Lopez J, Rosiñol L, Gutierrez NC, Martín-Ramos ML, Oriol A, Teruel AI, Echeveste MA, de Paz R, de Arriba F, Hernandez MT, Palomera L, Martinez R, Martin A et al (2017) Depth of response in multiple myeloma: a pooled analysis of three PETHEMA/GEM clinical trials. J Clin Oncol 35:2900–2910. https://doi.org/10.1200/JCO.2016.69.2517

    Article  CAS  PubMed  Google Scholar 

  9. Takamatsu H, Ogawa Y, Kobayashi N, Obata K, Narisawa T, Nakayama K, Munemoto S, Aoki G, Ohata K, Kumano Y, Ozaki J, Murata R, Kondo Y, Terasaki Y, Kurokawa T, Miyamoto T, Shimizu N, Fukushima T, Yoshida A et al (2013) Detection of minimal residual disease in patients with multiple myeloma using clonotype-specific PCR primers designed from DNA extracted from archival bone marrow slides. Exp Hematol 41:894–902. https://doi.org/10.1016/j.exphem.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  10. Rawstron AC, Child JA, de Tute RM, Davies FE, Gregory WM, Bell SE, Szubert AJ, Navarro-Coy N, Drayson MT, Feyler S, Ross FM, Cook G, Jackson GH, Morgan GJ, Owen RG (2013) Minimal residual disease assessed by multi-parameter flow cytometry in multiple myeloma: Impact on outcome in the Medical Research Council Myeloma IX study. J Clin Oncol 31:2540–2547. https://doi.org/10.1200/JCO.2012.46.2119

    Article  PubMed  Google Scholar 

  11. Puig N, Sarasquete ME, Balanzategui A, Martínez J, Paiva B, García H, Fumero S, Jiménez C, Alcoceba M, Chillón MC, Sebastián E, Marín L, Montalbán MA, Mateos MV, Oriol A, Palomera L, de la Rubia J, Vidriales MB, Bladé J et al (2014) Critical evaluation of Aso RQ-PCR for minimal residual disease evaluation in multiple myeloma. A comparative analysis with flow cytometry. Leukemia 28:391–397. https://doi.org/10.1038/leu.2013.217

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Lopez J, Lahuerta JJ, Pepin F, González M, Barrio S, Ayala R, Puig N, Montalban MA, Paiva B, Weng L, Jiménez C, Sopena M, Moorhead M, Cedena T, Rapado I, Mateos MV, Rosiñol L, Oriol A, Blanchard MJ et al (2014) Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 123:3073–3079. https://doi.org/10.1182/blood-2014-01-550020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, García-Sánchez O, Böttcher S, van der Velden VHJ, Pérez-Morán JJ, Vidriales MB, García-Sanz R, Jimenez C, González M, Martínez-López J, Corral-Mateos A, Grigore GE, Fluxá R, Pontes R, Caetano J, Sedek L et al (2017) Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 31:2094–2103. https://doi.org/10.1038/leu.2017.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roshal M, Flores-Montero JA, Gao Q, Koeber M, Wardrope J, Durie BGM, Dogan A, Orfao A, Landgren O (2017) MRD detection in multiple myeloma: comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods. Blood Adv 1:728–732. https://doi.org/10.1182/bloodadvances.2016003715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takamatsu H, Yoroidaka T, Fujisawa M, Kobori K, Hanawa M, Yamashita T, Murata R, Ueda M, Nakao S, Matsue K (2019) Comparison of minimal residual disease detection in multiple myeloma by SRL 8-color single-tube and EuroFlow 8-color 2-tube multiparameter flow cytometry. Int J Hematol 109:377–381. https://doi.org/10.1007/s12185-019-02615-z

    Article  CAS  PubMed  Google Scholar 

  16. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, Munshi N, Lonial S, Bladé J, Mateos MV, Dimopoulos M, Kastritis E, Boccadoro M, Orlowski R, Goldschmidt H, Spencer A, Hou J, Chng WJ, Usmani SZ et al (2016) Lancet Oncol 17:e328–e346. https://doi.org/10.1016/S1470-2045(16)30206-6

    Article  PubMed  Google Scholar 

  17. Arroz M, Came N, Lin P, Chen W, Yuan C, Lagoo A, Monreal M, de Tute R, Vergilio JA, Rawstron AC, Paiva B (2016) Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytom B 90:31–39. https://doi.org/10.1002/cyto.b.21228

    Article  CAS  Google Scholar 

  18. Flores-Montero J, de Tute R, Paiva B, Perez JJ, Böttcher S, Wind H, Sanoja L, Puig N, Lecrevisse Q, Vidriales MB, van Dongen JJ, Orfao A (2016) Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytom B 90:61–72. https://doi.org/10.1002/cyto.b.21265

    Article  CAS  Google Scholar 

  19. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

Download references

The authors thank all the participants, physicians, and staff involved in this study. We would like to thank Editage (www.editage.com) for the English language editing.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Sample collection was performed by K. Sato, K. Okazuka, T. Ishida, J. Nashimoto, Y. Uto, M. Ogura, Y. Yoshiki, Y. Abe, and N. Tsukada. Material preparation, data collection, and analysis were performed by J. Sakamoto, S. Kaneko, A. Maeda, H. Hamazaki, and Y. Hiragohri. The first draft of the manuscript was written by K. Sato, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kota Sato.

Ethics declarations

Ethics approval

This study was approved by the Ethics Committee of the Japanese Red Cross Medical Center.

Informed consent

Written informed consent was obtained from all patients, in accordance with the Declaration of Helsinki.

Conflict of interest

K. Suzuki received personal fees from Celgene, Takeda, Ono Pharmaceuticals, Astellas, Novartis, Sanofi, Bristol Myers Squibb, Janssen, and AbbVie. T. Ishida received personal fees from Janssen, Celgene, Ono Pharmaceuticals, and Takeda. N. Tsukada received personal fees from Takeda. J. Sakamoto, S. Kaneko, A. Maeda, H. Hamazaki, and Y. Hiragohri are employees of BML, Inc. The other authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, K., Okazuka, K., Ishida, T. et al. Minimal residual disease detection in multiple myeloma: comparison between BML single-tube 10-color multiparameter flow cytometry and EuroFlow multiparameter flow cytometry. Ann Hematol 100, 2989–2995 (2021). https://doi.org/10.1007/s00277-021-04634-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-021-04634-5

Keywords

Navigation