Skip to main content
Log in

Association between BCL11A, HSB1L-MYB, and XmnI γG-158 (C/T) gene polymorphism and hemoglobin F level in Egyptian sickle cell disease patients

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Sickle cell disease (SCD) is a monogenic disease characterized by multisystem morbidity and highly variable clinical course. Inter-individual variability in hemoglobin F (HbF) levels is one of the main modifiers that account for the clinical heterogeneity in SCD. HbF levels are affected by, among other factors, single nucleotide polymorphisms (SNPs) at the BCL11A gene and the HBS1L-MYB intergenic region and Xmn1 gene. Our aim was to investigate HbF-enhancer haplotypes at these loci to obtain a first overview of the genetic situation of SCD patients in Egypt and its impact on the severity of the disease. The study included 100 SCD patients and 100 matched controls. Genotyping of BCL11A (rs1886868 C/T), HBS1L-MYB (rs9389268 A/G) and Xmn1 γG158 (rs7842144 C/T) SNPs showed no statistically significant difference between SCD patients and controls except for the hetero-mutant genotypes of BCL11A which was significantly higher in SCD patients compared with controls. Baseline HbF levels were significantly higher in those with co-inheritance of polymorphic genotypes of BCL11A + HSB1L-MYB and BCL11A + Xmn1. Steady-state HbF levels, used as an indicator of disease severity, were significantly higher in SCD-Sβ patients having the polymorphic genotypes of HSB1L-MYB. Fold change of HbF in both patient groups did not differ between those harboring the wild and the polymorphic genotypes of the studied SNPs. In conclusion, BCL11A, HSB1L, and Xmn1 genetic polymorphisms had no positive impact on baseline HbF levels solely but had if coexisted. Discovery of the molecular mechanisms controlling HbF production could provide a more effective strategy for HbF induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smiley D, Dagogo-Jack S, Umpierrez G (2008) Therapy insight: metabolic and endocrine disorders in sickle cell disease. Nat Clin Pract Endocrinol Metab 4(2):102–109

    CAS  PubMed  Google Scholar 

  2. Bae HT, Baldwin CT, Sebastiani P, Telen MJ, Ashley-Koch A, Garrett M, Hooper WC, Bean CJ, DeBaun MR, Arking DE, Bhatnagar P, Casella JF, Keefer JR, Barron-Casella E, Gordeuk V, Kato GJ, Minniti C, Taylor J, Campbell A, Luchtman-Jones L, Hoppe C, Gladwin MT, Zhang Y, Steinberg MH (2012) Meta-analysis of 2040 sickle cell anemia patients: BCL11A and HBS1L-MYB are the major modifiers of HbF in African Americans. Blood 120:1961–1962

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rees DC, Williams TN, Gladwin MT (2010) Sickle-cell disease. Lancet 376:2018–2031

    CAS  PubMed  Google Scholar 

  4. Lettre G (2012) The search for genetic modifiers of disease severity in the hemoglobinopathies, Cold Spring Harb. Perspect. Med 2 (10) (2012) 1–12

  5. Bauer DE, Kamran SC, Orkin SH (2012) Reawakening fetal hemoglobin: prospects for new therapies for the beta-globin disorders. Blood 120(15):2945–2953

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Thein SL, Craig JE (1998) Genetics of Hb F/F cell variance in adults and heterocellular hereditary persistence of fetal hemoglobin. Hemoglobin 22(5–6):401–414

    CAS  PubMed  Google Scholar 

  7. Fong C, Menzel S, Lizarralde MA, Barreto G (2015) Genetic variants associated with fetal hemoglobin levels show the diverse ethnic origin in Colombian patients with sickle cell anemia. Biomedica 35(3):437–443

    PubMed  Google Scholar 

  8. Lettre G, Sankaran VG, Bezerra MA, Araújo AS, Uda M, Sanna S et al (2008) DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A 105(33):11869–11874

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fanis P, Kousiappa L, Phylactides M, Kleanthous M (2014) Genotyping of BCL11A and HBS1L-MYB SNPs associated with fetal haemoglobin levels: a SNaPshot minisequencing approach. BMC Genomics 15:108

    PubMed  PubMed Central  Google Scholar 

  10. Wyszynski DF, Baldwin CT, Cleves MA, Amirault Y, Nolan VG, Farrell JJ et al (2004) Polymorphisms near a chromosome 6q QTL area are associated with modulation of fetal hemoglobin levels in sickle cell anemia. Cell Mol Biol (Noisy-le-grand) 50:23–33

    CAS  Google Scholar 

  11. Stamatoyannopoulos G (2001) (2001) the molecular basis of blood diseases, 3rd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  12. Solovieff N, Milton JN, Hartley SW, Sherva R, Sebastiani P, Dworkis DA, Klings ES, Farrer LA, Garrett ME, Ashley-Koch A, Telen MJ, Fucharoen S, Ha SY, Li CK, Chui DHK, Baldwin CT, Steinberg MH (2010) Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster. Blood 115:1815–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Labie D, Pagnier J, Lapoumeroulie C, Rouabhi F, Dunda-Belkhodja O, Chardin P, Beldjord C, Wajcman H, Fabry ME, Nagel RL (1985) Common haplotype dependency of high Gg-globin gene expression and high HbF levels in b-thalassemia and sickle cell anemia patients. Proc Natl Acad Sci U S A 82:2111–2114

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Galarneau G, Palmer CD, Sankaran VG, Orkin SH, Hirschhorn JN, Letter G (2010) Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet 42:1049–1051

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, Lin C, Shao Z, Canver MC, Smith EC, Pinello L, Sabo PJ, Vierstra J, Voit RA, Yuan GC, Porteus MH, Stamatoyannopoulos JA, Lettre G, Orkin SH (2013) An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342:253–257

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Galanello R, Sanna S, Perseu L, Sollaino MC, Satta S, Lai ME, Barella S, Uda M, Usala G, Abecasis GR, Cao A (2009) Amelioration of Sardinian 0 thalassemia by genetic modifiers. Blood 114:3935–3937

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu L, Pertsemlidis A, Ding LH, Story MD, Steinberg MH, Sebastiani P, Hoppe C, Ballas SK, Pace BS (2016) A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease. Exp Biol Med (Maywood) 241(7):706–718

    CAS  Google Scholar 

  18. Steinberg MH, Forget BG, Higgs DR, Weatherall DJ (eds) (2009) Disorders of hemoglobin: genetics, pathophysiology, and clinical management, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  19. Galanello R, Origa R (2010) Beta-thalassemia. Orphanet J Rare Dis 5:11

    PubMed  PubMed Central  Google Scholar 

  20. Gaston M, Smith J, Gallagher D, Flournoy-Gill Z, West S, Bellevue R et al (1987) Recruitment in the cooperative study of sickle cell disease (CSSCD). Control Clin Trial 8:131S–140S

    CAS  Google Scholar 

  21. Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E, Kinney TR (1991) Pain in sickle cell disease. Rates and risk factors. N Engl J Med 325:11–16

    CAS  PubMed  Google Scholar 

  22. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP (1994) Mortality in sickle cell disease. Life expectancy and risk factors for early death. The New England Journal of Medicine 330:1639–1644

    CAS  PubMed  Google Scholar 

  23. Stamatoyannopoulos G and Grosveld F. Hemoglobin switching. In: Stamatoyannopoulos G, Majerus PW, Perlmutter RM, Varmus H (eds) (2001) The molecular basis of blood diseases, 3rd Philadelphia: Saunders

    Google Scholar 

  24. Stadhouders R, Thongjuea S, Andrieu-Soler C, Palstra R-J, Bryne JC, van den Heuvel A et al (2011) Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J 31:986–999

    PubMed  PubMed Central  Google Scholar 

  25. Xu J, Sankaran VG, Ni M, Menne TF, Puran RV, Kim N et al (2010) Transcriptional silencing of gamma-globin by BCL11A involves long range interactions and cooperation with SOX6. Genes Dev 24(8):783–798

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jawaid K, Wahlberg K, Thein SL, Best S (2010) Binding patterns of BCL11A in the globin and GATA1 loci and characterization of the BCL11A fetal hemoglobin locus. Blood Cells Mol Dis 45:140–146

    CAS  PubMed  Google Scholar 

  27. Vegiopoulos A, Garcia P, Emambokus N, Frampton J (2006) Coordination of erythropoiesis by the transcription factor c-Myb. Blood 107:4703–4710

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sankaran VG, Menne TF, Šćepanović D, Vergilio JA, Ji P, Kim J et al (2011) MicroRNA-15a and −16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci U S A 108(4):1519–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Menzel S, Garner C, Gut I, Matsuda F, Yamaguchi M, Heath S et al (2007) A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15, Nat. Genet. 39(10):1197–1199

    CAS  Google Scholar 

  30. Makani J, Menzel S, Nkya S, Cox SE, Drasar E, Soka D, Komba AN, Mgaya J, Rooks H, Vasavda N, Fegan G, Newton CR, Farrall M, Lay Thein S (2011) Genetics of fetal hemoglobin in Tanzanian and British patients with sickle cell anemia. Blood 117(4):1390–1392

    CAS  PubMed  Google Scholar 

  31. Uda M, Galanello R, Sanna S, Lettre G, Sankaran VG, Chen W et al. (2008) Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Nat Acad Sci USA.105:1620-5

  32. Sedgewick AE, Timofeev N, Sebastiani P, So JCC, Ma ESK, Chan LC, Fucharoen G, Fucharoen S, Barbosa CG, Vardarajan BN, Farrer LA, Baldwin CT, Steinberg MH, Chui DHK (2008) BCL11A is a major HbF quantitative trait locus in three different populations with β-hemoglobinopathies. Blood Cells Mol Dis 41:255–258

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Borg J, Papadopoulos P, Georgitsi M, Gutiérrez L, Grech G, Fanis P et al. (2010) Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet.42:801-5

  34. Thein SL, Menzel S, Lathrop M, Garner C (2009) Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet 18:216–223. https://doi.org/10.1093/hmg/ddp401

    Article  CAS  Google Scholar 

  35. Thein SL, Menzel S, Peng X, Best S, Jiang J, Close J, Silver N, Gerovasilli A, Ping C, Yamaguchi M, Wahlberg K, Ulug P, Spector TD, Garner C, Matsuda F, Farrall M, Lathrop M (2007) Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci U S A 104:11346–11351

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Creary LE, Ulug P, Menzel S, McKenzie CA, Hanchard NA, Taylor V et al (2009) Genetic variation on chromosome 6 influences F cell levels in healthy individuals of African descent and HbF levels in sickle cell patients. PLoS One 4(1):e4218

    PubMed  PubMed Central  Google Scholar 

  37. Nagel RL (1994) Origins and dispersion of the sickle gene. In: Embury SH, Hebbel RP, Mohandas N, Steinberg MH (eds) Sickle cell disease: basic principles and clinical practice. Raven Press, New York, pp 353–380

    Google Scholar 

  38. Lapoumeroulie C, Dunda O, Ducrocq R, Trabuchet G, Mony-Lobé M, Bodo JM et al (1992) A novel sickle cell mutation of yet another origin in Africa: the Cameroon type. Hum Genet 89(3):333–337

    CAS  PubMed  Google Scholar 

  39. Adekile AD (1997) Historical and anthropological correlates of βS haplotypes and α- and β-thalassemia alleles in the Arabian peninsula. Hemoglobin. 21(3):281–296

    CAS  PubMed  Google Scholar 

  40. Green NS, Fabry ME, Kaptue-Noche L, Nagel RL (1993) Senegal haplotype is associated with higher HbF than Benin and Cameroon haplotypes in African children with sickle cell anemia. Am J Hematol 44(2):145–146

    CAS  PubMed  Google Scholar 

  41. Nagel RL, Rao SK, Dunda-Belkhodja O, Connolly MM, Fabry ME, Georges A, Krishnamoorthy R, Labie D (1987) The hematologic characteristics of sickle cell anemia bearing the Bantu haplotype: the relationship between G gamma and HbF level. Blood 69(4):1026–1030

    CAS  PubMed  Google Scholar 

  42. Akinsheye I, Alsultan A, Solovieff N, Ngo D, Baldwin CT, Sebastiani P, Chui DHK, Steinberg MH (2011) Fetal hemoglobin in sickle cell anemia. Blood 118(1):19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sheehan VA, Luo Z, Flanagan JM, Howard TA, Thompson BW, Wang WC, Kutlar A, Ware RE, BABY HUG Investigators (2013) Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes. Am J Hematol 88:571–576

    CAS  PubMed  Google Scholar 

  44. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    CAS  PubMed  Google Scholar 

  45. Kathiresan S, Melander O, Anevski D, Guiducci C, Burtt NP, Roos C, Hirschhorn JN, Berglund G, Hedblad B, Groop L, Altshuler DM, Newton-Cheh C, Orho-Melander M (2008) Polymorphisms associated with cholesterol and risk of cardiovascular events. N Engl J Med 358:1240–1249

    CAS  PubMed  Google Scholar 

Download references

Funding

Self funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in choosing the topic, study design, following the practical part of the paper, revision of the statistical analysis and formulating the results, writing and editing the manuscript.

Corresponding author

Correspondence to Mervat Mamdooh Khorshied.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

Informed consent was obtained from all subjects’ legal guardians in accordance with the 1964 Helsinki Declaration.

Ethical approval

The research protocol was approved by the Research Ethics Committee of Pediatrics and Clinical Pathology Departments, Faculty of Medicine, Cairo University.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ghamrawy, M., Yassa, M.E., Tousson, A.M.S. et al. Association between BCL11A, HSB1L-MYB, and XmnI γG-158 (C/T) gene polymorphism and hemoglobin F level in Egyptian sickle cell disease patients. Ann Hematol 99, 2279–2288 (2020). https://doi.org/10.1007/s00277-020-04187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-04187-z

Keywords

Navigation