Skip to main content

Advertisement

Log in

The FLAMSA concept—past and future

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The FLAMSA reduced intensity (RIC) concept, also known as “sequential therapy”, is a conceptual platform for the treatment of leukemia separated in several parts: induction therapy, a sequence of antileukemic and immunosuppressive conditioning for allogeneic stem cell transplantation, and immune restitution supported by donor lymphocyte transfusions. The antileukemic part consists of fludarabine, cytosine arabinoside, and amsacrine (FLAMSA); non-cross reactive agents like fludarabine and amsacrine have been successfully used in cases of refractoriness and relapse. Immunosuppressive conditioning and transplantation follow after only 3 days of rest. This way, the toxicity of allogeneic transplantation could be reduced and the anti-leukemia effects by using allogeneic immune cells could be optimized. This review summarizes available data on efficacy and toxicity of this approach. Further, possible strategies for improvements are discussed in order to provide better chances for elderly and frail patients and patients with advanced and high-risk disease. Among others, several new agents are available that target molecular changes of leukemia for induction of remission and allow for bridging the time after transplantation until adoptive immunotherapy becomes safe and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thomas ED, Lochte HL Jr, Cannon JH, Sahler OD, Ferrebee JW (1959) Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest 38:1709–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mathe G, Amiel JL, Schwarzenberg L, Cattan A, Schneider M (1965) Adoptive immunotherapy of acute leukemia: experimental and clinical results. Cancer Res 25(9):1525–1531

    CAS  PubMed  Google Scholar 

  3. Thomas E, Storb R, Clift RA, Fefer A, Johnson FL, Neiman PE et al (1975) Bone-marrow transplantation (first of two parts). N Engl J Med 292(16):832–843

    Article  CAS  PubMed  Google Scholar 

  4. Kolb HJ, Rieder I, Rodt H, Netzel B, Grosse Wilde H, Scholz S et al (1979) Antilymphocytic antibodies and marrow transplantation. VI. Graft- versus-host tolerance in DLA-incompatible dogs after in vitro treatment of bone marrow with absorbed antithymocyte globulin. Transplantation 27:242–245

    Article  CAS  PubMed  Google Scholar 

  5. Rodt H, Kolb HJ, Netzel B, Rieder I, Janka G, Belohradsky B et al (1979) GVHD suppression by incubation of bone marrow grafts with anti-T- cell globulin: effect in the canine model and application to clinical bone marrow transplantation. TransplantProc. 11:962–966

    CAS  Google Scholar 

  6. Waldmann H, Polliak A, Hale G, Or R, Cividalli G, Weiss L et al (1984) Elimination of graft-versus-host disease by in-vitro depletion of alloreactive lymphocytes with a monoclonal rat anti-human lymphocyte antibody (Campath 1). Lancet II:483–486

    Article  Google Scholar 

  7. Goldman JM, Gale RP, Horowitz MM, Biggs JC, Champlin RE, Gluckman E et al (1988) Bone marrow transplantation for chronic myelogenous leukemia in chronic phase: increased risk of relapse associated with T-cell depletion. AnnInternMed. 108:806–814

    CAS  Google Scholar 

  8. Kolb HJ, Gunther W, Schumm M, Holler E, Wilmanns W, Thierfelder S (1997) Adoptive immunotherapy in canine chimeras. Transplantation. 63(3):430–436

    Article  CAS  PubMed  Google Scholar 

  9. Apperley JF, Jones L, Hale G, Waldmann H, Hows J, Rombos Y, Tsatalas C, Marcus RE, Goolden AW, Gordon-Smith EC (1986) Bone marrow transplantation for patients with chronic myeloid leukaemia: T-cell depletion with Campath-1 reduces the incidence of graft-versus-host disease but may increase the risk of leukaemic relapse. Bone Marrow Transplant 1(1):53–66

    CAS  PubMed  Google Scholar 

  10. Kolb HJ, Beisser K, Mittermueller J, Clemm C, Schumm M, Ledderose G et al (1992) Adoptive immunotherapy in human and canine chimeras. In: Hiddemann W, Büchner T, Plunkett W, Keating M, Wörmann B, Andreeff M (eds) Acute Leukemias - Pharmakokinetics. Springer, Berlin, pp 595–600

    Chapter  Google Scholar 

  11. Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, Heim M, Wilmanns W (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 76(12):2462–2465

    Article  CAS  PubMed  Google Scholar 

  12. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D, van Rhee F, Mittermueller J, de Witte T, Holler E, Ansari H, European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients 397. Blood. 86(5):2041–2050

    Article  CAS  PubMed  Google Scholar 

  13. Collins RH, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R et al (1997) Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15:433–444

    Article  PubMed  Google Scholar 

  14. Shiobara S, Nakao S, Ueda M, Yamazaki H, Takahashi S, Asano S, Yabe H, Kato S, Imoto S, Maruta A, Yoshida T, Gondo H, Morishima Y, Kodera Y (2000) Donor leukocyte infusion for Japanese patients with relapsed leukemia after allogeneic bone marrow transplantation: lower incidence of acute graft-versus-host disease and improved outcome. Bone Marrow Transplant 26(7):769–774

    Article  CAS  PubMed  Google Scholar 

  15. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG et al (2001) Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood. 97(11):3390–3400

    Article  CAS  PubMed  Google Scholar 

  16. Giralt S, Khouri I, Champlin R (1999) Non myeloablative "mini transplants". Cancer Treat Res 101:97–108

    Article  CAS  PubMed  Google Scholar 

  17. Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ (2005) Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23(24):5675–5687

    Article  PubMed  Google Scholar 

  18. Gandhi V, Estey E, Keating MJ, Plunkett W (1993) Fludarabine potentiates metabolism of cytarabine in patients with acute myelogenous leukemia during therapy. J Clin Oncol 11(1):116–124

    Article  CAS  PubMed  Google Scholar 

  19. Legha SS, Keating MJ, Zander AR, McCredie KB, Bodey GP, Freireich EJ (1980) 4′-(9-Acridinylamino) methanesulfon-m-anisidide (AMSA): a new drug effective in the treatment of adult acute leukemia. Ann Intern Med 93(1):17–21

    Article  CAS  PubMed  Google Scholar 

  20. Arlin ZA, Feldman EJ, Mittelman A, Ahmed T, Puccio C, Chun HG, Cook P, Baskind P, Marboe C, Mehta R (1991) Amsacrine is safe and effective therapy for patients with myocardial dysfunction and acute leukemia. Cancer. 68(6):1198–1200

    Article  CAS  PubMed  Google Scholar 

  21. Mohty M, Malard F, Blaise D, Milpied N, Socie G, Huynh A et al (2017) Sequential regimen of clofarabine, cytosine arabinoside and reduced-intensity conditioned transplantation for primary refractory acute myeloid leukemia. Haematologica. 102(1):184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Santos GW, Tutschka P, Brookmeyer R et al (1983) Marrow transplantation for acute non-lymphocytic leukemia after treatment with busulfan and cyclophosphamide. N Engl J Med 309:1347–1353

    Article  CAS  PubMed  Google Scholar 

  23. Kolb HJ, Guenther W, Gyurkocza B, Hoetzl F, Simoes B, Falk C, Schleuning M, Ledderose G (2003) Tolerance and chimerism. Transplantation. 75(9 Suppl):26S–31S

    Article  PubMed  Google Scholar 

  24. Anderlini P, Wu J, Gersten I, Ewell M, Tolar J, Antin JH, Adams R, Arai S, Eames G, Horwitz ME, McCarty J, Nakamura R, Pulsipher MA, Rowley S, Leifer E, Carter SL, DiFronzo NL, Horowitz MM, Confer D, Deeg HJ, Eapen M (2015) Cyclophosphamide conditioning in patients with severe aplastic anaemia given unrelated marrow transplantation: a phase 1-2 dose de-escalation study. Lancet Haematol 2(9):e367–e375

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weisser M, Schleuning M, Ledderose G, Rolf B, Schnittger S, Schoch C, Schwerdtfeger R, Kolb HJ (2004) Reduced-intensity conditioning using TBI (8 Gy), fludarabine, cyclophosphamide and ATG in elderly CML patients provides excellent results especially when performed in the early course of the disease. Bone Marrow Transplant 34(12):1083–1088

    Article  CAS  PubMed  Google Scholar 

  26. Kimler BF, Park CH, Yakar D, Mies RM (1985) Radiation response of human normal and leukemic hemopoietic cells assayed by in vitro colony formation. Int J Radiat Oncol Biol Phys 11(4):809–816

    Article  CAS  PubMed  Google Scholar 

  27. Pfeiffer T, Schleuning M, Mayer J, Haude KH, Tischer J, Buchholz S, Bunjes D, Bug G, Holler E, Meyer RG, Greinix H, Scheid C, Christopeit M, Schnittger S, Braess J, Schlimok G, Spiekermann K, Ganser A, Kolb HJ, Schmid C (2013) Influence of molecular subgroups on outcome of acute myeloid leukemia with normal karyotype in 141 patients undergoing salvage allogeneic stem cell transplantation in primary induction failure or beyond first relapse. Haematologica. 98(4):518–525

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heinicke T, Labopin M, Schmid C, Polge E, Socie G, Blaise D et al (2018) Reduced relapse incidence with FLAMSA-RIC compared with busulfan/fludarabine for acute myelogenous leukemia patients in first or second complete remission: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 24(11):2224–2232

    Article  CAS  PubMed  Google Scholar 

  29. Holtick U, Herling M, Pflug N, Chakupurakal G, Leitzke S, Wolf D, Hallek M, Scheid C, Chemnitz JM (2017) Similar outcome after allogeneic stem cell transplantation with a modified FLAMSA conditioning protocol substituting 4 Gy TBI with treosulfan in an elderly population with high-risk AML. Ann Hematol 96(3):479–487

    Article  CAS  PubMed  Google Scholar 

  30. Craddock C, Jackson AE, Malladi RK, Gilleece MH, Peniket A, Salim R, Tholouli E, Potter V, Crawley CR, Protheroe RE, Anne Parker A, Wilson K, Pavlu J, Nagra Siddique S, Hodgkinson A, Mason J, Wheatley K, Russell NH, Freeman SD (2019) The sequential FLAMSA-Bu conditioning regimen does not improve outcome in patients allografted for high risk acute myeloid and myelodysplasia irrespective of pre-transplant MRD status: results of the UK NCRI Figaro Trial. Blood. 134(Suppl 1)

  31. Sheth V, Labopin M, Canaani J, Volin L, Brecht A, Ganser A, et al. (2018) Comparison of FLAMSA-based reduced intensity conditioning with treosulfan/fludarabine conditioning for patients with acute myeloid leukemia: an ALWP/EBMT analysis. Bone Marrow Transplant

  32. Deeg HJ, Stevens EA, Salit RB, Ermoian RP, Fang M, Gyurkocza B, Sorror ML, Fatobene G, Baumgart J, Burroughs LM, Delaney C, Doney K, Egan DN, Flowers MED, Milano F, Radich JP, Scott BL, Sickle EJ, Wood BL, Yeung C, Storer BE (2018) Transplant conditioning with treosulfan/fludarabine with or without total body irradiation: a randomized phase II trial in patients with myelodysplastic syndrome and acute myeloid leukemia. Biol Blood Marrow Transplant 24(5):956–963

    Article  CAS  PubMed  Google Scholar 

  33. Drobyski WR, Keever CA, Roth MS, Koethe S, Hanson G, McFadden P, Gottschall JL, Ash RC, van Tuinen P, Horowitz MM (1993) Salvage immunotherapy using donor leukocyte infusions as treatment for relpased chronic myelogenous leukemia after bone marrow transplantation: efficacy and toxicity of a defined T-cell dose. Blood. 82:2310–2318

    Article  CAS  PubMed  Google Scholar 

  34. Johnson BD, Becker EE, LaBelle JL, Truitt RL (1999) Role of immunoregulatory donor T cells in suppression of graft-versus-host disease following donor leukocyte infusion therapy. JImmunol. 163(12):6479–6487

    CAS  Google Scholar 

  35. Kolb HJ, Rank A, Chen X (2004) In-vivo generation of leukaemia-derived dendritic cells. . p. 439–51

  36. Mackinnon S, Papadopoulos EB, Carabasi MH, Reich L, Collins NH, Boulad F, Castro-Malaspina H, Childs BH, Gillio AP, Kernan NA (1995) Adoptive immunotherapy evaluating escalating doses of donor leukocytes for relapse of chronic myeloid leukemia after bone marrow transplantation: separation of graft-versus-leukemia responses from graft-versus-host disease. Blood. 86:1261–1268

    Article  CAS  PubMed  Google Scholar 

  37. Dazzi F, Szydlo RM, Craddock C, Cross NC, Kaeda J, Chase A et al (2000) Comparison of single-dose and escalating-dose regimens of donor lymphocyte infusion for relapse after allografting for chronic myeloid leukemia. Blood. 95(1):67–71

    Article  CAS  PubMed  Google Scholar 

  38. Schmid C, Schleuning M, Aschan J, Ringden O, Hahn J, Holler E et al (2004) Low-dose ARAC, donor cells, and GM-CSF for treatment of recurrent acute myeloid leukemia after allogeneic stem cell transplantation. Leukemia. 18(8):1430–1433

    Article  CAS  PubMed  Google Scholar 

  39. Jedlickova Z, Schmid C, Koenecke C, Hertenstein B, Baurmann H, Schwerdtfeger R, Tischer J, Kolb HJ, Schleuning M (2016) Long-term results of adjuvant donor lymphocyte transfusion in AML after allogeneic stem cell transplantation. Bone Marrow Transplant 51(5):663–667

    Article  CAS  PubMed  Google Scholar 

  40. Schumm M, Günther W, Kolb HJ, Rieber P, Büttner M, Voss C et al (1994) Prevention of graft-versus-host disease in DLA-haplotype mismatched dogs and hemopoietic engraftment of CD6-depleted marrow with and without cG-CSF treatment after transplantation. Tissue Antigens 43:170–178

    Article  CAS  PubMed  Google Scholar 

  41. Kernan NA, Collins NJ, Juliano L, Cartagena T, Dupont B, Oreilly RJ (1986) Clonable T-lymphocytes in T-depleted bone marrow transplants correlate with development of graft-versus-host disease. Blood 68:770

    Article  CAS  PubMed  Google Scholar 

  42. Marks DI, Lush R, Cavenagh J, Milligan DW, Schey S, Parker A, Clark FJ, Hunt L, Yin J, Fuller S, Vandenberghe E, Marsh J, Littlewood T, Smith GM, Culligan D, Hunter A, Chopra R, Davies A, Towlson K, Williams CD (2002) The toxicity and efficacy of donor lymphocyte infusions given after reduced-intensity conditioning allogeneic stem cell transplantation. Blood. 100(9):3108–3114

    Article  CAS  PubMed  Google Scholar 

  43. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, Patel Y, Bhudia N, Farah H, Mason J, Wall K, Akiki S, Griffiths M, Solomon E, McCaughan F, Linch DC, Gale RE, Vyas P, Freeman SD, Russell N, Burnett AK, Grimwade D, UK National Cancer Research Institute AML Working Group (2016) Assessment of minimal residual disease in standard-risk AML. N Engl J Med 374(5):422–433

    Article  CAS  PubMed  Google Scholar 

  44. Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A, Zeilemaker A et al (2018) Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 378(13):1189–1199

    Article  CAS  PubMed  Google Scholar 

  45. Yan CH, Liu DH, Liu KY, Xu LP, Liu YR, Chen H, Han W, Wang Y, Qin YZ, Huang XJ (2012) Risk stratification-directed donor lymphocyte infusion could reduce relapse of standard-risk acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Blood. 119(14):3256–3262

    Article  CAS  PubMed  Google Scholar 

  46. Yan CH, Liu QF, Wu DP, Zhang X, Xu LP, Zhang XH et al (2017) Prophylactic donor lymphocyte infusion (DLI) followed by minimal residual disease and graft-versus-host disease-guided multiple DLIs could improve outcomes after allogeneic hematopoietic stem cell transplantation in patients with refractory/relapsed acute leukemia. Biol Blood Marrow Transplant 23(8):1311–1319

    Article  PubMed  Google Scholar 

  47. Dazzi F, Raanani P, van Rhee F, Olavarria E, Szydlo RM, Apperley JF, et al. (1997) RT-PCR for bcr-abl transcripts in CML patients receiving DLI as treatment for relapse after BMT: differing pattern of molecular response. Bone Marrow Transplant. 19(Suppl 1):S32-S

  48. Chen X, Regn S, Kolb HJ, Roskrow M (1999) The generation of leukemic dendritic cells from patients with chronic myeloid leukemia (CML) using the combination of interferon-à and GM-CSF. Blood. 94(10 Suppl 1):529a-a

  49. Chen X, Regn S, Raffegerst S, Kolb HJ, Roskrow M (2000) Interferon alpha in combination with GM-CSF induces the differentiation of leukaemic antigen-presenting cells that have the capacity to stimulate a specific anti-leukaemic cytotoxic T-cell response from patients with chronic myeloid leukaemia. Br J Haematol 111(2):596–607

    CAS  PubMed  Google Scholar 

  50. Woiciechowsky A, Regn S, Kolb HJ, Roskrow M (2001) Leukemic dendritic cells generated in the presence of FLT3 ligand have the capacity to stimulate an autologous leukaemia-specific cytotoxic T cell response from patients with acute myeloid leukaemia. Leukemia. 15:246–255

    Article  CAS  PubMed  Google Scholar 

  51. Schmetzer HM, Kremser A, Loibl J, Kroell T, Kolb HJ (2007) Quantification of ex vivo generated dendritic cells (DC) and leukemia-derived DC contributes to estimate the quality of DC, to detect optimal DC-generating methods or to optimize DC-mediated T-cell-activation-procedures ex vivo or in vivo 9. Leukemia. 21(6):1338–1341

    Article  CAS  PubMed  Google Scholar 

  52. Anguille S, Lion E, Willemen Y, Van Tendeloo VF, Berneman ZN, Smits EL (2011) Interferon-alpha in acute myeloid leukemia: an old drug revisited. Leukemia. 25(5):739–748

    Article  CAS  PubMed  Google Scholar 

  53. Schroeder T, Czibere A, Platzbecker U, Bug G, Uharek L, Luft T, Giagounidis A, Zohren F, Bruns I, Wolschke C, Rieger K, Fenk R, Germing U, Haas R, Kröger N, Kobbe G (2013) Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 27(6):1229–1235

    Article  CAS  PubMed  Google Scholar 

  54. Zeiser R, Beelen DW, Bethge W, Bornhauser M, Bug G, Burchert A et al (2019) Biology-driven approaches to prevent and treat relapse of myeloid Neoplasia after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 25(4):e128–ee40

    Article  PubMed  Google Scholar 

  55. Zeiser R, Vago L (2019) Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood. 133(12):1290–1297

    Article  CAS  PubMed  Google Scholar 

  56. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT et al (2009) Loss of mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med 361(5):478–488

    Article  CAS  PubMed  Google Scholar 

  57. Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, et al. (2018) Immune escape of relapsed aml cells after allogeneic transplantation. N Engl J Med

  58. Toffalori C, Zito L, Gambacorta V, Riba M, Oliveira G, Bucci G, Barcella M, Spinelli O, Greco R, Crucitti L, Cieri N, Noviello M, Manfredi F, Montaldo E, Ostuni R, Naldini MM, Gentner B, Waterhouse M, Zeiser R, Finke J, Hanoun M, Beelen DW, Gojo I, Luznik L, Onozawa M, Teshima T, Devillier R, Blaise D, Halkes CJM, Griffioen M, Carrabba MG, Bernardi M, Peccatori J, Barlassina C, Stupka E, Lazarevic D, Tonon G, Rambaldi A, Cittaro D, Bonini C, Fleischhauer K, Ciceri F, Vago L (2019) Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med 25(4):603–611

    Article  CAS  PubMed  Google Scholar 

  59. Spinner MA, Advani RH, Connors JM, Azzi J, Diefenbach C (2018) New treatment algorithms in Hodgkin lymphoma: too much or too little? Am Soc Clin Oncol Educ Book 38:626–636

    Article  PubMed  Google Scholar 

  60. Zhou J, Bashey A, Zhong R, Corringham S, Messer K, Pu M, Ma W, Chut T, Soiffer R, Mitrovich RC, Lowy I, Ball ED (2011) CTLA-4 blockade following relapse of malignancy after allogeneic stem cell transplantation is associated with T cell activation but not with increased levels of T regulatory cells. Biol Blood Marrow Transplant 17(5):682–692

    Article  PubMed  CAS  Google Scholar 

  61. Davids MS, Kim HT, Bachireddy P, Costello C, Liguori R, Savell A, Lukez AP, Avigan D, Chen YB, McSweeney P, LeBoeuf N, Rooney MS, Bowden M, Zhou CW, Granter SR, Hornick JL, Rodig SJ, Hirakawa M, Severgnini M, Hodi FS, Wu CJ, Ho VT, Cutler C, Koreth J, Alyea EP, Antin JH, Armand P, Streicher H, Ball ED, Ritz J, Bashey A, Soiffer RJ, Leukemia and Lymphoma Society Blood Cancer Research Partnership (2016) Ipilimumab for patients with relapse after allogeneic transplantation. N Engl J Med 375(2):143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chang YJ, Wang Y, Liu YR, Xu LP, Zhang XH, Chen H, Chen YH, Wang FR, Han W, Sun YQ, Yan CH, Tang FF, Mo XD, Liu KY, Huang XJ (2017) Haploidentical allograft is superior to matched sibling donor allograft in eradicating pre-transplantation minimal residual disease of AML patients as determined by multiparameter flow cytometry: a retrospective and prospective analysis. J Hematol Oncol 10(1):134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Platzbecker U, Wermke M, Radke J, Oelschlaegel U, Seltmann F, Kiani A, Klut IM, Knoth H, Röllig C, Schetelig J, Mohr B, Graehlert X, Ehninger G, Bornhäuser M, Thiede C (2012) Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 26(3):381–389

    Article  CAS  PubMed  Google Scholar 

  64. Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G, Vyas P, Cavenagh J, Stankovic T, Moss P, Craddock C (2010) Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood. 116(11):1908–1918

    Article  CAS  PubMed  Google Scholar 

  65. de Lima M, Giralt S, Thall PF, de Padua SL, Jones RB, Komanduri K et al (2010) Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: a dose and schedule finding study. Cancer. 116(23):5420–5431

    Article  PubMed  CAS  Google Scholar 

  66. Craddock C, Labopin M, Robin M, Finke J, Chevallier P, Yakoub-Agha I, Bourhis JH, Sengelov H, Blaise D, Luft T, Hallek M, Kroger N, Nagler A, Mohty M (2016) Clinical activity of azacitidine in patients who relapse after allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica. 101(7):879–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. de Lima M, Oran B, Champlin RE, Papadopoulos EB, Giralt SA, Scott BL, William BM, Hetzer J, Laille E, Hubbell B, Skikne BS, Craddock C (2018) CC-486 maintenance after stem cell transplantation in patients with acute myeloid leukemia or myelodysplastic syndromes. Biol Blood Marrow Transplant 24(10):2017–2024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Sommer S, Cruijsen M, Claus R, Bertz H, Wasch R, Marks R et al (2018) Decitabine in combination with donor lymphocyte infusions can induce remissions in relapsed myeloid malignancies with higher leukemic burden after allogeneic hematopoietic cell transplantation. Leuk Res 72:20–26

    Article  CAS  PubMed  Google Scholar 

  69. Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A, et al. (2009) Compassionate-use of sorafenib in Flt3-ITD positive acute myeloid leukemia: sustained regression prior and post allogenic stem cell transplantation 1. Blood

  70. Metzelder SK, Schroeder T, Lubbert M, Ditschkowski M, Gotze K, Scholl S et al (2017) Long-term survival of sorafenib-treated FLT3-ITD-positive acute myeloid leukaemia patients relapsing after allogeneic stem cell transplantation. Eur J Cancer 86:233–239

    Article  CAS  PubMed  Google Scholar 

  71. Brunner AM, Li S, Fathi AT, Wadleigh M, Ho VT, Collier K, Connolly C, Ballen KK, Cutler CS, Dey BR, el-Jawahri A, Nikiforow S, McAfee SL, Koreth J, Deangelo DJ, Alyea EP, Antin JH, Spitzer TR, Stone RM, Soiffer RJ, Chen YB (2016) Haematopoietic cell transplantation with and without sorafenib maintenance for patients with FLT3-ITD acute myeloid leukaemia in first complete remission. Br J Haematol 175(3):496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, Thiede C, Prior TW, Döhner K, Marcucci G, Lo-Coco F, Klisovic RB, Wei A, Sierra J, Sanz MA, Brandwein JM, de Witte T, Niederwieser D, Appelbaum FR, Medeiros BC, Tallman MS, Krauter J, Schlenk RF, Ganser A, Serve H, Ehninger G, Amadori S, Larson RA, Döhner H (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stone RM (2018) What FLT3 inhibitor holds the greatest promise? Best Pract Res Clin Haematol 31(4):401–404

    Article  PubMed  Google Scholar 

  74. Mathew NR, Baumgartner F, Braun L, O'Sullivan D, Thomas S, Waterhouse M, Müller TA, Hanke K, Taromi S, Apostolova P, Illert AL, Melchinger W, Duquesne S, Schmitt-Graeff A, Osswald L, Yan KL, Weber A, Tugues S, Spath S, Pfeifer D, Follo M, Claus R, Lübbert M, Rummelt C, Bertz H, Wäsch R, Haag J, Schmidts A, Schultheiss M, Bettinger D, Thimme R, Ullrich E, Tanriver Y, Vuong GL, Arnold R, Hemmati P, Wolf D, Ditschkowski M, Jilg C, Wilhelm K, Leiber C, Gerull S, Halter J, Lengerke C, Pabst T, Schroeder T, Kobbe G, Rösler W, Doostkam S, Meckel S, Stabla K, Metzelder SK, Halbach S, Brummer T, Hu Z, Dengjel J, Hackanson B, Schmid C, Holtick U, Scheid C, Spyridonidis A, Stölzel F, Ordemann R, Müller LP, Sicre-de-Fontbrune F, Ihorst G, Kuball J, Ehlert JE, Feger D, Wagner EM, Cahn JY, Schnell J, Kuchenbauer F, Bunjes D, Chakraverty R, Richardson S, Gill S, Kröger N, Ayuk F, Vago L, Ciceri F, Müller AM, Kondo T, Teshima T, Klaeger S, Kuster B, Kim D(DH), Weisdorf D, van der Velden W, Dörfel D, Bethge W, Hilgendorf I, Hochhaus A, Andrieux G, Börries M, Busch H, Magenau J, Reddy P, Labopin M, Antin JH, Henden AS, Hill GR, Kennedy GA, Bar M, Sarma A, McLornan D, Mufti G, Oran B, Rezvani K, Shah O, Negrin RS, Nagler A, Prinz M, Burchert A, Neubauer A, Beelen D, Mackensen A, von Bubnoff N, Herr W, Becher B, Socié G, Caligiuri MA, Ruggiero E, Bonini C, Häcker G, Duyster J, Finke J, Pearce E, Blazar BR, Zeiser R (2018) Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med 24(3):282–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bug G, Burchert A, Wagner EM, Kroger N, Berg T, Guller S et al (2017) Phase I/II study of the deacetylase inhibitor panobinostat after allogeneic stem cell transplantation in patients with high-risk MDS or AML (PANOBEST trial). Leukemia. 31(11):2523–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Choi SW, Braun T, Chang L, Ferrara JL, Pawarode A, Magenau JM et al (2014) Vorinostat plus tacrolimus and mycophenolate to prevent graft-versus-host disease after related-donor reduced-intensity conditioning allogeneic haemopoietic stem-cell transplantation: a phase 1/2 trial. Lancet Oncol 15(1):87–95

    Article  CAS  PubMed  Google Scholar 

  77. Buchner T, Schlenk RF, Schaich M, Dohner K, Krahl R, Krauter J et al (2012) Acute myeloid leukemia (AML): different treatment strategies versus a common standard arm--combined prospective analysis by the German AML intergroup. J Clin Oncol 30(29):3604–3610

    Article  PubMed  CAS  Google Scholar 

  78. Estey EH (2018) Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol 93(10):1267–1291

    Article  PubMed  Google Scholar 

  79. Burnett AK, Milligan D, Prentice AG, Goldstone AH, McMullin MF, Hills RK et al (2007) A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 109(6):1114–1124

    Article  CAS  PubMed  Google Scholar 

  80. Tilly H, Castaigne S, Bordessoule D, Casassus P, Le Prise PY, Tertian G et al (1990) Low-dose cytarabine versus intensive chemotherapy in the treatment of acute nonlymphocytic leukemia in the elderly. J Clin Oncol 8(2):272–279

    Article  CAS  PubMed  Google Scholar 

  81. Kadia TM, Cortes J, Ravandi F, Jabbour E, Konopleva M, Benton CB, Burger J, Sasaki K, Borthakur G, DiNardo CD, Pemmaraju N, Daver N, Ferrajoli A, Wang X, Patel K, Jorgensen JL, Wang S, O'Brien S, Pierce S, Tuttle C, Estrov Z, Verstovsek S, Garcia-Manero G, Kantarjian H (2018) Cladribine and low-dose cytarabine alternating with decitabine as front-line therapy for elderly patients with acute myeloid leukaemia: a phase 2 single-arm trial. Lancet Haematol 5(9):e411–ee21

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bose P, Vachhani P, Cortes JE (2017) Treatment of relapsed/refractory acute myeloid leukemia. Curr Treat Options in Oncol 18(3):17

    Article  Google Scholar 

  83. Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, Stone RM, Bixby DL, Kolitz JE, Schiller GJ, Wieduwilt MJ, Ryan DH, Hoering A, Banerjee K, Chiarella M, Louie AC, Medeiros BC (2018) CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol 36(26):2684–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS et al (2019) Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 133(1):7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. DiNardo CD, Rausch CR, Benton C, Kadia T, Jain N, Pemmaraju N et al (2018) Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol 93(3):401–407

    Article  CAS  PubMed  Google Scholar 

  86. Wei AH, Tiong IS (2017) Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood. 130(23):2469–2474

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Jochem Kolb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Kolb Consulting UG has consulting contracts with Novartis, Therakos and Eurocept without impact on the presented review.

Research involving human participants

All procedures performed in studies involving human patients were in accordance with the standards of the institutional review boards and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants for the treatment as well as the scientific use of the data.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolb, HJ., Schmid, C. The FLAMSA concept—past and future. Ann Hematol 99, 1979–1988 (2020). https://doi.org/10.1007/s00277-020-04131-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-04131-1

Keywords

Navigation