Skip to main content

Advertisement

Log in

HMG-CoA reductase inhibitors as adjuvant treatment for hematologic malignancies: what is the current evidence?

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Statins have been shown to possess properties that go beyond their lipid-lowering effects. These agents act on the mevalonate pathway and inhibit synthesis of cholesterol, geranylgeranyl pyrophosphate, and farnesyl pyrophosphate, which are necessary for posttranslational modification of the Rho, Rac, and Ras superfamily of proteins. Early phase studies have demonstrated that this modulation of cellular signaling can ultimately exert pro-apoptotic, anti-angiogenic, and immunomodulatory effects, and might even restore chemosensitivity in several hematologic cancers. Nonetheless, these promising preclinical results have not yet migrated from the bench to the bedside as their effectiveness as adjuvant agents in hematologic malignancies is currently uncertain. In the present review, we summarize the existing evidence stemming from preclinical and clinical studies pertaining to the use of statins as adjuvant therapies in hematologic malignancies, and discuss the new insights gained from the ongoing translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 335:1001–1009

    Article  CAS  PubMed  Google Scholar 

  2. Steinberg D (2008) The statins in preventive cardiology. N Engl J Med 359:1426–1427

    Article  CAS  PubMed  Google Scholar 

  3. Gauthaman K, Fong CY, Bongso A (2009) Statins, stem cells, and cancer. J Cell Biochem 106:975–983

    Article  CAS  PubMed  Google Scholar 

  4. Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, Gotto AM Jr (2001) Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 344:1959–1965

    Article  CAS  PubMed  Google Scholar 

  5. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, Ford I, Gaw A, Hyland M, Jukema JW, Kamper AM, Macfarlane PW, Meinders AE, Norrie J, Packard CJ, Perry IJ, Stott DJ, Sweeney BJ, Twomey C, Westendorp RG (2002) Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360:1623–1630

    Article  CAS  PubMed  Google Scholar 

  6. Shitara Y, Sugiyama Y (2006) Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther 112:71–105

    Article  CAS  PubMed  Google Scholar 

  7. Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M (2012) Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev 64:102–146

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed TA, Hayslip J, Leggas M (2013) Pharmacokinetics of high-dose simvastatin in refractory and relapsed chronic lymphocytic leukemia patients. Cancer Chemother Pharmacol 72:1369–1374

    Article  CAS  PubMed  Google Scholar 

  9. Pedersen TR, Wilhelmsen L, Faergeman O, Strandberg TE, Thorgeirsson G, Troedsson L, Kristianson J, Berg K, Cook TJ, Haghfelt T, Kjekshus J, Miettinen T, Olsson AG, Pyorala K, Wedel H (2000) Follow-up study of patients randomized in the Scandinavian simvastatin survival study (4S) of cholesterol lowering. Am J Cardiol 86:257–262

    Article  CAS  PubMed  Google Scholar 

  10. Hebert PR, Gaziano JM, Chan KS, Hennekens CH (1997) Cholesterol lowering with statin drugs, risk of stroke, and total mortality. An overview of randomized trials. J Am Med Assoc 278:313–321

    Article  CAS  Google Scholar 

  11. Bjerre LM, Lelorier J (2001) Do statins cause cancer? A metaanalysis of large randomized clinical trials. Am J Med 110:716–723

    Article  CAS  PubMed  Google Scholar 

  12. Pfeffer MA, Keech A, Sacks FM, Cobbe SM, Tonkin A, Byington RP, Davis BR, Friedman CP, Braunwald E (2002) Safety and tolerability of pravastatin in long-term clinical trials: prospective pravastatin pooling (PPP) project. Circulation 105:2341–2346

    Article  CAS  PubMed  Google Scholar 

  13. Simes RJ, Marschner IC, Hunt D, Colquhoun D, Sullivan D, Stewart RA, Hague W, Keech A, Thompson P, White H, Shaw J, Tonkin A (2002) Relationship between lipid levels and clinical outcomes in the long-term intervention with pravastatin in ischemic disease (LIPID) trial: to what extent is the reduction in coronary events with pravastatin explained by on-study lipid levels? Circulation 105:1162–1169

    Article  CAS  PubMed  Google Scholar 

  14. Law MR, Thompson SG (1991) Low serum cholesterol and the risk of cancer: an analysis of the published prospective studies. Cancer Causes Control 2:253–261

    Article  CAS  PubMed  Google Scholar 

  15. Law MR, Thompson SG, Wald NJ (1994) Assessing possible hazards of reducing serum cholesterol. BMJ 308:373–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Cauley JA, Zmuda JM, Lui LY, Hillier TA, Ness RB, Stone KL, Cummings SR, Bauer DC (2003) Lipid-lowering drug use and breast cancer in older women: a prospective study. J Womens Health 12:749–756

    Article  Google Scholar 

  17. Boudreau DM, Gardner JS, Malone KE, Heckbert SR, Blough DK, Daling JR (2004) The association between 3-hydroxy-3 methylglutaryl coenzyme A inhibitor use and breast carcinoma risk among postmenopausal women: a case-control study. Cancer 100:2308–2316

    Article  CAS  PubMed  Google Scholar 

  18. Strandberg TE, Pyorala K, Cook TJ, Wilhelmsen L, Faergeman O, Thorgeirsson G, Pedersen TR, Kjekshus J (2004) Mortality and incidence of cancer during 10-year follow-up of the Scandinavian simvastatin survival study (4S). Lancet 364:771–777

    Article  CAS  PubMed  Google Scholar 

  19. Poynter JN, Gruber SB, Higgins PDR, Almog R, Bonner JD, Rennert HS, Low M, Greenson JK, Rennert G (2005) Statins and the risk of colorectal cancer. N Engl J Med 352:2184–2192

    Article  CAS  PubMed  Google Scholar 

  20. Shannon J, Tewoderos S, Garzotto M, Beer TM, Derenick R, Palma A, Farris PE (2005) Statins and prostate cancer risk: a case-control study. Am J Epidemiol 162:318–325

    Article  PubMed  Google Scholar 

  21. Hindler K, Cleeland CS, Rivera E, Collard CD (2006) The role of statins in cancer therapy. Oncologist 11:306–315

    Article  CAS  PubMed  Google Scholar 

  22. Fortuny J, de Sanjosé S, Becker N, Maynadié M, Cocco PL, Staines A, Foretova L, Vornanen M, Brennan P, Nieters A, Alvaro T, Boffetta P (2006) Statin use and risk of lymphoid neoplasms: results from the European case-control study EPILYMPH. Cancer Epidemiol Biomark Prev 15:921–925

    Article  CAS  Google Scholar 

  23. Beiderbeck AB, Holly EA, Sturkenboom MC, Coebergh JW, Stricker BH, Leufkens HG (2003) Prescription medications associated with a decreased risk of non-Hodgkin’s lymphoma. Am J Epidemiol 157:510–516

    Article  PubMed  Google Scholar 

  24. Zhang Y, Holford TR, Leaderer B, Zahm SH, Boyle P, Morton LM, Zhang B, Zou K, Flynn S, Tallini G, Owens PH, Zheng T (2004) Prior medical conditions and medication use and risk of non-Hodgkin lymphoma in Connecticut United States women. Cancer Causes Control 15:419–428

    Article  PubMed  Google Scholar 

  25. Friis S, Poulsen AH, Johnsen SP, McLaughlin JK, Fryzek JP, Dalton SO, Sørensen HT, Olsen JH (2005) Cancer risk among statin users: a population-based cohort study. Int J Cancer 114:643–647

    Article  CAS  PubMed  Google Scholar 

  26. Bonovas S, Filioussi K, Tsantes A, Sitaras NM (2007) Use of statins and risk of haematological malignancies: a meta-analysis of six randomized clinical trials and eight observational studies. Br J Clin Pharmacol 64:255–262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  28. Nakahara K, Kuriyama M, Sonoda Y (1998) Myopathy induced by HMG-CoA reductase inhibitors in rabbits: a pathological, electrophysiological and biochemical study. Toxicol Appl Pharmacol 152:99–106

    Article  CAS  PubMed  Google Scholar 

  29. Jackson SM, Ericsson J, Edwards PA (1997) Signalling molecules derived from the cholesterol biosynthetic pathway. Subcell Biochem 28:1–21

    Article  CAS  PubMed  Google Scholar 

  30. Ward AF, Braun BS, Shannon KM (2012) Targeting oncogenic Ras signaling in hematologic malignancies. Blood 120:3397–3406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Braess J, Hiddemann W (2001) The widening role of statins: RAS signal transduction and drug-induced cytotoxicity in human leukemia: a commentary to ‘interaction of cytosine arabinoside and lovastatin in human leukemia cells’. Leuk Res 25:661–663

    Article  CAS  PubMed  Google Scholar 

  32. Newman A, Clutterbuck RD, Powles RL, Millar JL (1994) Selective inhibition of primary acute myeloid leukaemia cell growth by simvastatin. Leukemia 8:2023–2029

    CAS  PubMed  Google Scholar 

  33. Vitols S, Angelin B, Juliusson G (1997) Simvastatin impairs mitogen-induced proliferation of malignant B-lymphocytes from humans-in vitro and in vivo studies. Lipids 32:255–262

    Article  CAS  PubMed  Google Scholar 

  34. Cuthbert JA, Lipsky PE (1990) Inhibition by 6-fluoromevalonate demonstrates that mevalonate or one of the mevalonate phosphates is necessary for lymphocyte proliferation. J Biol Chem 265:18568–18575

    CAS  PubMed  Google Scholar 

  35. Sumi S, Beauchamp RD, Townsend CJ, Uchida T, Murakami M, Rajaraman S, Ishizuka J, Thompson JC (1992) Inhibition of pancreatic adenocarcinoma cell growth by lovastatin. Gastroenterology 103:982–989

    CAS  PubMed  Google Scholar 

  36. Sassano A, Katsoulidis E, Antico G, Altman JK, Redig AJ, Minucci S, Tallman MS, Platanias LC (2007) Suppressive effects of statins on acute promyelocytic leukemia cells. Cancer Res 67:4524–4532

    Article  CAS  PubMed  Google Scholar 

  37. Bessler H, Salman H, Bergman M, Djaldetti M (2007) On the factors modulating the effect of statins on malignant cell proliferation. Cancer Investig 25:279–284

    Article  CAS  Google Scholar 

  38. Keyomarsi K, Sandoval L, Band V, Pardee AB (1991) Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res 51:3602–3609

    CAS  PubMed  Google Scholar 

  39. Hengst L, Dulic V, Slingerland JM, Lees E, Reed SI (1994) A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc Natl Acad Sci U S A 91:5291–5295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Gray-Bablin J, Rao S, Keyomarsi K (1997) Lovastatin induction of cyclin-dependent kinase inhibitors in human breast cells occurs in a cell cycle-independent fashion. Cancer Res 57:604–609

    CAS  PubMed  Google Scholar 

  41. Lee SJ, Ha MJ, Lee J, Nguyen P, Choi YH, Pirnia F, Kang WK, Wang XF, Kim SJ, Trepel JB (1998) Inhibition of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase pathway induces p53-independent transcriptional regulation of p21(WAF1/CIP1) in human prostate carcinoma cells. J Biol Chem 273:10618–10623

    Article  CAS  PubMed  Google Scholar 

  42. Rao S, Lowe M, Herliczek TW, Keyomarsi K (1998) Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene 17:2393–2402

    Article  CAS  PubMed  Google Scholar 

  43. Wächtershäuser A, Akoglu B, Stein J (2001) HMG-CoA reductase inhibitor mevastatin enhances the growth inhibitory effect of butyrate in the colorectal carcinoma cell line Caco-2. Carcinogenesis 22:1061–1067

    Article  PubMed  Google Scholar 

  44. Lee J, Lee I, Park C, Kang WK (2006) Lovastatin-induced RhoA modulation and its effect on senescence in prostate cancer cells. Biochem Biophys Res Commun 339:748–754

    Article  CAS  PubMed  Google Scholar 

  45. Pérez-Sala D, Mollinedo F (1994) Inhibition of isoprenoid biosynthesis induces apoptosis in human promyelocytic HL-60 cells. Biochem Biophys Res Commun 199:1209–1215

    Article  PubMed  Google Scholar 

  46. Dimitroulakos J, Nohynek D, Backway KL, Hedley DW, Yeger H, Freedman MH, Minden MD, Penn LZ (1999) Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood 93:1308–1318

    CAS  PubMed  Google Scholar 

  47. Wang IK, Lin-Shiau SY, Lin JK (2000) Induction of apoptosis by lovastatin through activation of caspase-3 and DNase II in leukaemia HL-60 cells. Pharmacol Toxicol 86:83–91

    Article  CAS  PubMed  Google Scholar 

  48. Lishner M, Bar-Sef A, Elis A, Fabian I (2001) Effect of simvastatin alone and in combination with cytosine arabinoside on the proliferation of myeloid leukemia cell lines. J Investig Med 49:319–324

    Article  CAS  PubMed  Google Scholar 

  49. Wong WW, Tan MM, Xia Z, Dimitroulakos J, Minden MD, Penn LZ (2001) Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clin Cancer Res 7:2067–2075

    CAS  PubMed  Google Scholar 

  50. Yasuda N, Matzno S, Iwano C, Nishikata M, Matsuyama K (2005) Evaluation of apoptosis and necrosis induced by statins using fluorescence-enhanced flow cytometry. J Pharm Biomed Anal 39:712–717

    Article  CAS  PubMed  Google Scholar 

  51. Sheen C, Vincent T, Barrett D, Horwitz EM, Hulitt J, Strong E, Grupp SA, Teachey DT (2011) Statins are active in acute lymphoblastic leukaemia (ALL): a therapy that may treat ALL and prevent avascular necrosis. Br J Haematol 155:403–407

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Chapman-Shimshoni D, Yuklea M, Radnay J, Shapiro H, Lishner M (2003) Simvastatin induces apoptosis of B-CLL cells by activation of mitochondrial caspase 9. Exp Hematol 31:779–783

    Article  CAS  PubMed  Google Scholar 

  53. Yang YC, Xiao DW, Liu H, Chuan LM, Zeng YL, Zhou DA, Liu W, Xu GQ, Huang WF (2009) Mechanism of simvastatin-induced K562 cell apoptosis. Pharmacology 84:191–195

    Article  CAS  PubMed  Google Scholar 

  54. Gronich N, Drucker L, Shapiro H, Radnay J, Yarkoni S, Lishner M (2004) Simvastatin induces death of multiple myeloma cell lines. J Investig Med 52:335–344

    Article  CAS  PubMed  Google Scholar 

  55. Cafforio P, Dammacco F, Gernone A, Silvestris F (2005) Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis 26:883–891

    Article  CAS  PubMed  Google Scholar 

  56. Nonaka M, Uota S, Saitoh Y, Takahashi M, Sugimoto H, Amet T, Arai A, Miura O, Yamamoto N, Yamaoka S (2009) Role for protein geranylgeranylation in adult T-cell leukemia cell survival. Exp Cell Res 315:141–150

    Article  CAS  PubMed  Google Scholar 

  57. Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2001) Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15:1398–1407

    Article  CAS  PubMed  Google Scholar 

  58. van de Donk NWCJ, Schotte D, Kamphuis MMJ, van Marion AM, van Kessel B, Bloem AC, Lokhorst HM (2003) Protein geranylgeranylation is critical for the regulation of survival and proliferation of lymphoma tumor cells. Clin Cancer Res 9:5735–5748

    PubMed  Google Scholar 

  59. van de Donk NWCJ, Kamphuis MMJ, van Kessel B, Lokhorst HM, Bloem AC (2003) Inhibition of protein geranylgeranylation induces apoptosis in myeloma plasma cells by reducing Mcl-1 protein levels. Blood 102:3354–3362

    Article  PubMed  CAS  Google Scholar 

  60. Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ (2004) Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res 64:6461–6468

    Article  CAS  PubMed  Google Scholar 

  61. Li HY, Appelbaum FR, Willman CL, Zager RA, Banker DE (2003) Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood 101:3628–3634

    Article  CAS  PubMed  Google Scholar 

  62. Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR (1999) Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res 5:2223–2229

    CAS  PubMed  Google Scholar 

  63. Dimitroulakos J, Thai S, Wasfy GH, Hedley DW, Minden MD, Penn LZ (2000) Lovastatin induces a pronounced differentiation response in acute myeloid leukemias. Leuk Lymphoma 40:167–178

    Article  CAS  PubMed  Google Scholar 

  64. Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2002) HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16:508–519

    Article  CAS  PubMed  Google Scholar 

  65. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  66. Vaughan CJ, Gotto AM Jr, Basson CT (2000) The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol 35:1–10

    Article  CAS  PubMed  Google Scholar 

  67. Koh K (2000) Effects of statins on vascular wall: vasomotor function, inflammation, and plaque stability. Cardiovasc Res 47:648–657

    Article  CAS  PubMed  Google Scholar 

  68. Weis M, Pehlivanli S, Meiser BM, von Scheidt W (2001) Simvastatin treatment is associated with improvement in coronary endothelial function and decreased cytokine activation after heart transplantation. J Am Coll Cardiol 38:814–818

    Article  CAS  PubMed  Google Scholar 

  69. Weis M, Heeschen C, Glassford AJ, Cooke JP (2002) Statins have biphasic effect on angiogenesis. Circulation 105:739–745

    Article  CAS  PubMed  Google Scholar 

  70. Goligorsky MS, Budzikowski AS, Tsukahara H, Noiri E (1999) Co-operation between endothelin and nitric oxide in promoting endothelial cell migration and angiogenesis. Clin Exp Pharmacol Physiol 26:269–271

    Article  CAS  PubMed  Google Scholar 

  71. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Zhao TT, Trinh D, Addison CL, Dimitroulakos J (2010) Lovastatin inhibits VEGFR and AKT activation: synergistic cytotoxicity in combination with VEGFR inhibitors. PLoS One 5:e12563

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Paydas S, Ergin M, Erdogan S, Seydaoglu G (2008) Prognostic significance of EBV-LMP1 and VEGF-A expressions in non-Hodgkin’s lymphomas. Leuk Res 32:1424–1430

    Article  CAS  PubMed  Google Scholar 

  74. Xie L, Shen LD, Qing C, Yang ZZ, Li K, Li Y, Yang JL (2012) Correlational study of vascular endothelial growth factor expression and microvessel density in primary malignant gastric lymphoma. Med Oncol 29:1711–1715

    Article  CAS  PubMed  Google Scholar 

  75. Li HM, Long Y, Qing C, Yu M, Li ZH, Zhang XM, Li XJ, Chen YJ, Zhang YL, Liang Y (2011) Arsenic trioxide induces apoptosis of Burkitt lymphoma cell lines through multiple apoptotic pathways and triggers antiangiogenesis. Oncol Res 19:149–163

    Article  PubMed  CAS  Google Scholar 

  76. Aguiar Bujanda D (2008) Complete response of relapsed angioimmunoblastic T-cell lymphoma following therapy with bevacizumab. Ann Oncol 19:396–397

    Article  CAS  PubMed  Google Scholar 

  77. Wang L, Shi WY, Yang F, Tang W, Gapihan G, Varna M, Shen ZX, Chen SJ, Leboeuf C, Janin A, Zhao WL (2011) Bevacizumab potentiates chemotherapeutic effect on T-leukemia/lymphoma cells by direct action on tumor endothelial cells. Haematologica 96:927–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Avramis IA, Panosyan EH, Dorey F, Holcenberg JS, Avramis VI (2006) Correlation between high vascular endothelial growth factor-A serum levels and treatment outcome in patients with standard-risk acute lymphoblastic leukemia: a report from Children’s Oncology Group Study CCG- 1962. Clin Cancer Res 12:6978–6984

    Article  CAS  PubMed  Google Scholar 

  79. Karp JE, Gojo I, Pili R, Gocke CD, Greer J, Guo C, Qian D, Morris L, Tidwell M, Chen H, Zwiebel J (2004) Targeting vascular endothelial growth factor for relapsed and refractory adult acute myelogenous leukemias: therapy with sequential 1-beta-d-arabino—furanosylcytosine, mitoxantrone, and bevacizumab. Clin Cancer Res 10:3577–3585

    Article  CAS  PubMed  Google Scholar 

  80. Joshi S, Khan R, Sharma M, Kumar L, Sharma A (2001) Angiopoietin-2: a potential novel diagnostic marker in multiple myeloma. Clin Biochem 44:590–595

    Article  CAS  Google Scholar 

  81. Holstein SA, Hohl RJ (2001) Interaction of cytosine arabinoside and lovastatin in human leukemia cells. Leuk Res 25:651–660

    Article  CAS  PubMed  Google Scholar 

  82. Moreau AS, Jia X, Patterson CJ, Roccaro AM, Xu L, Sacco A, O’Connor K, Soumerai J, Ngo HT, Hatjiharissi E, Hunter ZR, Ciccarelli B, Manning R, Ghobrial IM, Leleu X, Treon SP (2008) The HMG-CoA inhibitor, simvastatin, triggers in vitro anti-tumour effect and decreases IgM secretion in Waldenstrom macroglobulinaemia. Br J Haematol 142:775–785

    Article  CAS  PubMed  Google Scholar 

  83. Podhorecka M, Halicka D, Klimek P, Kowal M, Chocholska S, Dmoszynska A (2010) Simvastatin and purine analogs have a synergic effect on apoptosis of chronic lymphocytic leukemia cells. Ann Hematol 89:1115–1124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Feleszko W, Młynarczuk I, Olszewska D, Jalili A, Grzela T, Lasek W, Hoser G, Korczak-Kowalska G, Jakóbisiak M (2002) Lovastatin potentiates antitumor activity of doxorubicin in murine melanoma via an apoptosis-dependent mechanism. Int J Cancer 100:111–118

    Article  CAS  PubMed  Google Scholar 

  85. Riganti C, Doublier S, Costamagna C, Aldieri E, Pescarmona G, Ghigo D, Bosia A (2008) Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human colon cancer HT29 cells. Mol Pharmacol 74:476–484

    Article  CAS  PubMed  Google Scholar 

  86. Feleszko W, Mlynarczuk I, Balkowiec-Iskra EZ, Czajka A, Switaj T, Stoklosa T, Giermasz A, Jakóbisiak M (2000) Lovastatin potentiates antitumor activity and attenuates cardiotoxicity of doxorubicin in three tumor models in mice. Clin Cancer Res 6:2044–2052

    CAS  PubMed  Google Scholar 

  87. Martirosyan A, Clendening JW, Goard CA, Penn LZ (2010) Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance. BMC Cancer 10:103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Iliskovic N, Singal PK (1997) Lipid lowering: an important factor in preventing adriamycin-induced heart failure. Am J Pathol 150:727–734

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Ahn KS, Sethi G, Aggarwal BB (2008) Reversal of chemoresistance and enhancement of apoptosis by statins through down-regulation of the NF-kappaB pathway. Biochem Pharmacol 75:907–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Rozados VR, Hinrichsen LI, Binda MM, Gervasoni SI, Matar P, Bonfil RD, Scharovsky OG (2008) Lovastatin enhances the antitumoral and apoptotic activity of doxorubicin in murine tumor models. Oncol Rep 19:1205–1211

    CAS  PubMed  Google Scholar 

  91. van der Spek E, Bloem AC, van de Donk NW, Bogers LH, van der Griend R, Kramer MH, de Weerdt O, Wittebol S, Lokhorst HM (2006) Dose-finding study of high-dose simvastatin combined with standard chemotherapy in patients with relapsed or refractory myeloma or lymphoma. Haematologica 91:542–545

    PubMed  Google Scholar 

  92. Holstein SA, Hohl RJ (2001) Synergistic interaction of lovastatin and paclitaxel in human cancer cells. Mol Cancer Ther 1:141–149

    CAS  PubMed  Google Scholar 

  93. van der Spek E, Bloem AC, Lokhorst HM, van Kessel B, Bogers-Boer L, van de Donk NW (2009) Inhibition of the mevalonate pathway potentiates the effects of lenalidomide in myeloma. Leuk Res 33:100–108

    Article  PubMed  CAS  Google Scholar 

  94. Dmoszynska A, Podhorecka M, Klimek P, Grzasko N (2006) Lovastatin and thalidomide have a combined effect on the rate of multiple myeloma cell apoptosis in short term cell cultures. Eur J Clin Pharmacol 62:325–329

    Article  CAS  PubMed  Google Scholar 

  95. Winiarska M, Bil J, Wilczek E, Wilczynski GM, Lekka M, Engelberts PJ, Mackus WJ, Gorska E, Bojarski L, Stoklosa T, Nowis D, Kurzaj Z, Makowski M, Glodkowska E, Issat T, Mrowka P, Lasek W, Dabrowska-Iwanicka A, Basak GW, Wasik M, Warzocha K, Sinski M, Gaciong Z, Jakobisiak M, Parren PW, Golab J (2008) Statins impair antitumor effects of rituximab by inducing conformational changes of CD20. PLoS Med 5:e64

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  96. Samaras P, Heider H, Haile SR, Petrausch U, Schaefer NG, Siciliano RD, Meisel A, Mischo A, Zweifel M, Knuth A, Stenner-Liewen F, Renner C (2010) Concomitant statin use does not impair the clinical outcome of patients with diffuse large B cell lymphoma treated with rituximab-CHOP. Ann Hematol 89:783–787

    Article  CAS  PubMed  Google Scholar 

  97. Nowakowski GS, Maurer MJ, Habermann TM, Ansell SM, Macon WR, Ristow KM, Allmer C, Slager SL, Witzig TE, Cerhan JR (2010) Statin use and prognosis in patients with diffuse large B-cell lymphoma and follicular lymphoma in the rituximab era. J Clin Oncol 28:412–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, Bua M, Szydlo R, Olavarria E, Kaeda J, Goldman JM, Marin D (2008) Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol 26:3358–3363

    Article  PubMed  Google Scholar 

  99. Deininger MW, Kopecky KJ, Radich JP, Kamel-Reid S, Stock W, Paietta E, Emanuel PD, Tallman M, Wadleigh M, Larson RA, Lipton JH, Slovak ML, Appelbaum FR, Druker BJ (2014) Imatinib 800 mg daily induces deeper molecular responses than imatinib 400 mg daily: results of SWOG S0325, an intergroup randomized PHASE II trial in newly diagnosed chronic phase chronic myeloid leukaemia. Br J Haematol 164:223–232

    Article  CAS  PubMed  Google Scholar 

  100. Chen R, Xiao W, Li D, Mu S (2011) Combination of simvastatin and imatinib sensitizes the CD34+ cells in K562 to cell death. Med Oncol 28:528–531

    PubMed  Google Scholar 

  101. Oh B, Kim TY, Min HJ, Kim M, Kang MS, Huh JY, Kim Y, Lee DS (2013) Synergistic killing effect of imatinib and simvastatin on imatinib-resistant chronic myelogenous leukemia cells. Anticancer Drugs 24:20–31

    Article  CAS  PubMed  Google Scholar 

  102. Norman P (2002) Tipifarnib. Curr Opin Investig Drugs 3:313–319

    CAS  PubMed  Google Scholar 

  103. Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K, Horak I, Tidwell ML, Liesveld J, Kottke TJ, Ange D, Buddharaju L, Gojo I, Highsmith WE, Belly RT, Hohl RJ, Rybak ME, Thibault A, Rosenblatt J (2001) Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase1clinical-laboratory correlative trial. Blood 97:3361–3369

    Article  CAS  PubMed  Google Scholar 

  104. Braun T, Fenaux P (2008) Farnesyltransferase inhibitors and their potential role in therapy for myelodysplastic syndromes and acute myeloid leukaemia. Br J Haematol 141:576–586

    Article  CAS  PubMed  Google Scholar 

  105. Harousseau JL, Martinelli G, Jedrzejczak WW, Brandwein JM, Bordessoule D, Masszi T, Ossenkoppele GJ, Alexeeva JA, Beutel G, Maertens J, Vidriales MB, Dombret H, Thomas X, Burnett AK, Robak T, Khuageva NK, Golenkov AK, Tothova E, Mollgard L, Park YC, Bessems A, De Porre P, Howes AJ (2009) A randomized phase 3 study of tipifarnib compared with best supportive care, including hydroxyurea, in the treatment of newly diagnosed acute myeloid leukemia in patients 70 years or older. Blood 114:1166–1173

    Article  CAS  PubMed  Google Scholar 

  106. Epling-Burnette PK, Loughran TP Jr (2010) Suppression of farnesyltransferase activity in acute myeloid leukemia and myelodysplastic syndrome: current understanding and recommended use of tipifarnib. Expert Opin Investig Drugs 19:689–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Whyte DB, Kirschmeier P, Hockenberry TN, Nunez-Oliva I, James L, Catino JJ, Bishop WR, Pai JK (1997) K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem 272:14459–14464

    Article  CAS  PubMed  Google Scholar 

  108. Van der Weide K, Jonge-Peeters S, Kuipers K, de Vries EG, Vellenga E (2009) Combining Simvastatin with the farnesyltransferase inhibitor tipifarnib results in an enhanced cytotoxic effect in a subset of primary CD34+ acute myeloid leukemia samples. Clin Cancer Res 15:3078–3083

    Google Scholar 

  109. Hus M, Grzasko N, Szostek M, Pluta A, Helbig G, Woszczyk D, Adamczyk-Cioch M, Jawniak D, Legiec W, Morawska M, Kozinska J, Waciński P, Dmoszynska A (2011) Thalidomide, dexamethasone and lovastatin with autologous stem cell transplantation as a salvage immunomodulatory therapy in patients with relapsed and refractory multiple myeloma. Ann Hematol 90:1161–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Sondergaard TE, Pedersen PT, Andersen TL, Soe K, Lund T, Ostergaard B, Garnero P, Delaisse JM, Plesner T (2009) A phase II clinical trial does not show that high dose simvastatin has beneficial effect on markers of bone turnover in multiple myeloma. Hematol Oncol 27:17–22

    Article  CAS  PubMed  Google Scholar 

  111. van der Spek E, Bloem AC, Sinnige HA, Lokhorst HM (2007) High dose simvastatin does not reverse resistance to vincristine, adriamycin, and dexamethasone (VAD) in myeloma. Haematologica 92:e130–e131

    Article  PubMed  Google Scholar 

  112. Kornblau SM, Banker DE, Stirewalt D, Shen D, Lemker E, Verstovsek S, Estrov Z, Faderl S, Cortes J, Beran M, Jackson CE, Chen W, Estey E, Appelbaum FR (2007) Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin+high-dose Ara-C: a phase 1 study. Blood 109:2999–3006

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Authors’ contributions

We certify sufficient participation of each author in the conception, writing, revising, and approval of the manuscript.

Conflict of interest

We certify that we do not have any affiliation with or financial involvement in any organization or entity with a direct financial interest in the subject matter or materials discussed in the manuscript. We do not have any commercial or proprietary interest in any drug, device, or equipment mentioned in the article below. No financial support was used for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Bockorny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bockorny, B., Dasanu, C.A. HMG-CoA reductase inhibitors as adjuvant treatment for hematologic malignancies: what is the current evidence?. Ann Hematol 94, 1–12 (2015). https://doi.org/10.1007/s00277-014-2236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-014-2236-4

Keywords

Navigation