Skip to main content

Advertisement

Log in

The gracilis and semitendinosus muscles: a morphometric study on 18 specimens with clinical implications

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Introduction

The pes anserinus consists of the sartorius, semitendinosus, and gracilis muscles. They coalesce together with the leg fascia to form the anserine plate. The semitendinosus and gracilis both form the deep layer of this plate and are clinically relevant for ligament reconstruction. The aim of the study is to report a detailed morphometric evaluation of the semitendinosus and gracilis muscles and assess their clinical implications.

Methods

Using a rigorous dissection process on 18 cadaveric hips, measurements of both the semitendinosus and gracilis muscles with bone parameters were conducted. We measured the following: (a) total femur, femoral shaft, and neck lengths, (b) total muscle lengths, and (c) intra-muscular and extra-muscular (free) tendon lengths. Correlation values between bone variables, muscle variables, and in-between muscle variables were computed.

Results

The total muscle and the distal intra-muscular tendon length of the St and Gr are correlated with the total femur length. When compared to gracilis, the total muscle and distal intra-muscular tendon lengths of the ST are much better correlated with the total femur length. The free distal tendon length for both muscles did not show a significant correlation with any of the femoral bone lengths.

Conclusion

The variability of tendon length of the ST/Gr poses a significant challenge to surgeons. This study reports a detailed morphometric evaluation of the ST/Gr hamstring muscle and tendons. It revealed a positive correlation between the femoral length and the ST/Gr graft lengths. This could help orthopedic surgeons in predicting the graft lengths pre-operatively and develop better planning for reconstructive surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdou Y (2014) Reconstruction of a chronic patellar tendon rupture with semitendinosus autograft. Arch Orthop Trauma Surg 134:1717–1721

    Article  Google Scholar 

  2. Abramowitch S, Zhang X, Curran M, Kilger R (2010) A comparison of the quasi-static mechanical and non-linear viscoelastic properties of the human semitendinosus and gracilis tendons. Clin Biomech 25:325–331. https://doi.org/10.1016/j.clinbiomech.2009.12.007

    Article  Google Scholar 

  3. Ashaolu J, Osinuga T, Ukwenya V, Makinde E, Adekanmbi A (2015) Pes anserinus structural framework and constituting tendons are grossly aberrant in Nigerian population. Anat Res Int 10:1–9. https://doi.org/10.1155/2015/483186

    Article  Google Scholar 

  4. Aune A, Holm I, Risberg M, Jensen H, Steen H (2001) Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction. A randomized study with two-year follow-up. Am J Sports Med 29:722–728

    Article  CAS  Google Scholar 

  5. Biau D, Tournoux C, Katsahian S, Schranz P, Nizard R (2006) Bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of anterior cruciate ligament: meta-analysis. BMJ 332:995–1001

    Article  Google Scholar 

  6. Boniello M, Schwingler P, Bonner J, Robinson S, Cotter A, Bonner K (2015) Impact of hamstring graft diameter on tendon strength: a biomechanical study. Arthroscopy 31:1084–1090. https://doi.org/10.1016/j.arthro.2014.12.023

    Article  PubMed  Google Scholar 

  7. Burks R, Desio S, Bachus K, Tyson L, Springer K (1998) Biomechanical evaluation of lateral patellar dislocations. Am J Knee Surg 11:24–31

    CAS  PubMed  Google Scholar 

  8. Calvo R, Figueroa D, Figueroa F, Vaisman A, Schmidt-Hebbel A, Morales N, Izquierdo G (2017) Five-strand hamstring autograft versus quadruple hamstring autograft with graft diameters 8.0 millimeters or more in anterior cruciate ligament reconstruction: clinical outcomes with a minimum 2-year follow-up. Arthroscopy 33:1007–1013

    Article  Google Scholar 

  9. Candal-Couto J, Deehan D (2003) The accessory bands of gracilis and semitendinosus: an anatomical study. Knee 10:325–328

    Article  CAS  Google Scholar 

  10. Chan J, Elliott A, Ellis S (2013) Reconstruction of Achilles rerupture with peroneus longus tendon transfer. Foot Ankle Int 34:898–903. https://doi.org/10.1177/1071100712473273

    Article  PubMed  Google Scholar 

  11. Charalambous C, Kwaees T (2013) Anatomical considerations in hamstring tendon harvesting for anterior cruciate ligament reconstruction. Muscles Ligaments Tendons J 2:253–257

    PubMed  PubMed Central  Google Scholar 

  12. Chaudhari A, Zelman E, Flanigan D, Kaeding C, Nagaraja H (2009) Anterior cruciate ligament-injured subjects have smaller anterior cruciate ligaments than matched controls: a magnetic resonance imaging study. American J Sports Med 37:1282–1287. https://doi.org/10.1177/0363546509332256

    Article  Google Scholar 

  13. Coobs B, LaPrade R, Grifth C, Nelson B (2007) Biomechanical analysis of an isolated fbular (lateral) collateral ligament reconstruction using an autogenous semitendinosus graft. Am J Sports Med 35: 1521–1527. https://doi.org/10.1177/0363546507302217

  14. Coquerel-Beghin D, Milliez PY, Auquit-Auckbur I, Lemierre G, Duparc F (2006) The gracilis musculocutaneous flap: vascular supply of the muscle and skin components. Surg Radiol Anat 28(6):588–595. https://doi.org/10.1007/s00276-006-0150-8

    Article  PubMed  Google Scholar 

  15. Dumbre Patil S, Dumbre Patil V, Basa V, Dombale A (2014) Semitendinosus tendon autograft for reconstruction of large defects in chronic Achilles tendon ruptures. Foot Ankle Int 35:699–705. https://doi.org/10.1177/1071100714531228

    Article  PubMed  Google Scholar 

  16. Ellison P, Mason L, Molloy A (2016) Chronic Achilles tendon rupture reconstructed using hamstring tendon autograft. Foot (Edinb) 26:41–44. https://doi.org/10.1016/j.foot.2015.09.007

    Article  Google Scholar 

  17. Fu F, Benjamin C (1999) Anterior cruciate ligament reconstruction using quadruple hamstring. Oper Tech Orthop 9:264–272

    Article  Google Scholar 

  18. Gonçalves S, Caetano R, Corte-Real N (2015) Salvage flexor hallucis longus transfer for a failed achilles repair: endoscopic technique. Arthrosc Tech 4:411–416. https://doi.org/10.1016/j.eats.2015.03.017

    Article  Google Scholar 

  19. Grawe B, Williams P, Burge A, Voigt M, Altchek D, Hannafin J, Allen A (2016) Anterior cruciate ligament reconstruction with autologous hamstring: can preoperative magnetic resonance imaging accurately predict graft diameter? J Orthop Sports Med 4:232–238

    Article  Google Scholar 

  20. Howell S (1993) Arthroscopically assisted technique for preventing roof impingement of an anterior cruciate ligament graft illustrated by the use of an autogenous double-looped semitendinosus and gracilis graft. Opin Tech Sports Med 1:58–65

    Article  Google Scholar 

  21. Jaureguito J, Paulos L (1996) Why grafts fail. Clin Orthop Relat Res 325:25–41. https://doi.org/10.1097/00003086-199604000-00005

    Article  Google Scholar 

  22. Juricic M, Vaysse P, Guitard J, Moscovici J, Becue J, Juskiewenski S (1993) Anatomic basis for use of a gracilis muscle flap. Surg Radiol Anat 15(3):163–168. https://doi.org/10.1007/BF01627695

    Article  CAS  PubMed  Google Scholar 

  23. Kapoor B, Clement D, Kirkley A, Maffulli N (2004) Current practice in the management of anterior cruciate ligament injuries in the United Kingdom. Br J Sports Med 38:542–544

    Article  CAS  Google Scholar 

  24. Koulouris G, Connell D (2005) Hamstring muscle complex: an imaging review. Radiographics 25:571–586

    Article  Google Scholar 

  25. Krahe M, Berlet G (2009) Achilles tendon ruptures, re rupture with revision surgery, tendinosis, and insertional disease. Foot Ankle Clin 14:247–275. https://doi.org/10.1016/j.fcl.2009.04.003

    Article  PubMed  Google Scholar 

  26. Kuptniratsaikul S, Kuptniratsaikul V, Udompunturak S, Siripunpiriya M, Tejapongvorachai T (2002) Measurement of the semitendinosus muscle tendon length: a cadaveric study in King Chulalongkorn Memorial Hospital. Chula Med J 46:123–130

    Google Scholar 

  27. Kyung H, Kim H (2015) Medial patellofemoral ligament reconstruction: a comprehensive review. Knee Surg Relat Res 27:133–140. https://doi.org/10.5792/ksrr.2015.27.3.133

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ladenhauf H, Berkes M, Green D (2013) Medial patellofemoral ligament reconstruction using hamstring autograft in children and adolescents. Arthrosc Tech 2:151–154

    Article  Google Scholar 

  29. Leo B, Krill M (2019) Patellar tendon reconstruction utilizing autograft hamstring: a docking technique for the sports medicine surgeon. J Orthop Surg Tech 2:68–73

    Google Scholar 

  30. Maffulli N, Ajis A, Longo U, Denaro V (2007) Chronic rupture of tendo Achillis. Foot Ankle Clin 12:583–600. https://doi.org/10.1016/j.fcl.2007.07.007

    Article  PubMed  Google Scholar 

  31. Maffulli N, Del Buono A, Loppini M, Denaro V (2013) Ipsilateral hamstring tendon graft reconstruction for chronic patellar tendon ruptures: average 5.8-year follow-up. J Bone Jt Surg Am 95:1231–1236. https://doi.org/10.2106/JBJS.L.01462

    Article  Google Scholar 

  32. Magnussen R, Lawrence J, West R, Toth A, Taylor D, Garrett W (2012) Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 28:526–531

    Article  Google Scholar 

  33. Marks P, Cameron M, Fu F (1993) Reconstruction of the cruciate ligaments with allogeneic transplants: techniques, results and perspectives. Orthopade 22:386–391

    CAS  PubMed  Google Scholar 

  34. Miller M, Olszewski A (1997) Cruciate ligament graft intra-articular distances. Arthroscopy 13:291–295. https://doi.org/10.1016/s0749-8063(97)90023-2

    Article  CAS  PubMed  Google Scholar 

  35. Mountney J, Senavongse W, Amis A, Thomas N (2005) Tensile strength of the medial patellofemoral ligament before and after repair or reconstruction. J Bone Jt Surg Br 87:36–40

    Article  CAS  Google Scholar 

  36. Noyes F, Butler D, Grood E, Zernicke R, Hefzy M (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Jt Surg Am 66:344–352

    Article  CAS  Google Scholar 

  37. Ovigue J, Graveleau N, Bouguenne N (2019) Patellar tendon reconstruction using hamstring tendon and adjustable suspensory cortical fixation. Arthrosc Tech 8:679–683

    Article  Google Scholar 

  38. Pereira R, Karam F, Schwanke R, Millman R, Foletto Z, Schwanke C (2016) Correlation between anthrometric data and length and thickness of tendons of semitendinosus and gracilis muscles used for graft in reconstruction of anterior cruciate ligament. Rev Bras Ortop 51:175–180

    Article  Google Scholar 

  39. Pérez-Bellmunt A, Miguel-Pérez M, Brugué M, Cabús J, Casals M, Martinoli C, Kuisma R (2015) An anatomical and histological study of the structures surrounding the proximal attachment of the hamstring muscles. Man Ther 20:445–450

    Article  Google Scholar 

  40. Piontek T, Bąkowski P, Ciemniewska-Gorzela K, Naczk J (2015) Novel Technique of Achilles Tendon Reconstruction Using Semitendinosus and Gracilis Tendon. Preliminary Report Ortopedia Traumatol Rehabil 17:619–625. https://doi.org/10.5604/15093492.1193034

    Article  Google Scholar 

  41. Reagan J, Kullar R, Burks R (2015) MPFL reconstruction: technique and results. Orthop Clin N Am 46:159–169. https://doi.org/10.1016/j.ocl.2014.09.012

    Article  Google Scholar 

  42. Ritchie J, Parker R (1996) Graft selection in anterior cruciate ligament revision surgery. Clin Orthop Relat Res 325:65–77. https://doi.org/10.1097/00003086-199604000-00008

    Article  Google Scholar 

  43. Sakti M, Yurianto H, Pasallo P, Hidayatullah S, Faisal A, Subagio E (2019) Anthropometric parameters measurement to predict 4-strand hamstring autograft size in single bundle anterior cruciate ligament reconstruction of South Sulawesi population. Int J Surg Open 21:58–63

    Article  Google Scholar 

  44. Samuelsson K, Andersson D, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthroscopy 25:1139–1174. https://doi.org/10.1016/j.arthro.2009.07.021

    Article  PubMed  Google Scholar 

  45. Sastre S, Popescu D, Núñez M, Pomes J, Tomas X, Peidro L (2010) Double-bundle versus single-bundle ACL reconstruction using the horizontal femoral position: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 18:32–36. https://doi.org/10.1007/s00167-009-0844-7

    Article  PubMed  Google Scholar 

  46. Shatari T, Niimi M, Fujita M, Kodaira S (2000) Vascular anatomy of gracilis muscle: arterial findings to enhance graciloplasty. Surg Radiol Anat 22(1):21–24. https://doi.org/10.1007/s00276-000-0021-7

    Article  CAS  PubMed  Google Scholar 

  47. Shrock K, Jackson D (1996) Arthroscopic management of the anterior cruciate ligament deficient knee. Oper Arthrosc 19:511–530

    Google Scholar 

  48. Stupay K, Swart E, Shubin Stein B (2015) Widespread implementation of medial patellofemoral ligament reconstruction for recurrent patellar instability maintains functional outcomes at mid-term to long-term follow-up while decreasing complication rates: a systematic review. Arthroscopy 31:1372–1380. https://doi.org/10.1016/j.arthro.2014.12.029

    Article  PubMed  Google Scholar 

  49. Treme G, Diduch D, Billante M, Miller M, Hart J (2008) Hamstring graft size prediction: a prospective clinical evaluation. Am J Sports Med 36:2204–2209

    Article  Google Scholar 

  50. Tuman J, Diduch D, Rubino L, Baumfeld J, Nguyen H, Hart J (2007) Predictors for hamstring graft diameter in anterior cruciate ligament reconstruction. Am J Sports Med 35:1945–1949. https://doi.org/10.1177/0363546507304667

    Article  PubMed  Google Scholar 

  51. Warren L, Marshall J (1979) The supporting structures and layers on the medial side of the knee: an anatomical analysis. J Bone Jt Surg Am 61:56–62

    Article  CAS  Google Scholar 

  52. West R, Harner C (2005) Graft selection in anterior cruciate ligament reconstruction. J Am Acad Orthop Surg 13:197–207

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

CA and FB conceived the study. CA performed dissection and measurements. CA and KY conducted data analysis. KY, AK, JM, JD and BAG edited the draft. All authors revised and approved the final draft.

Corresponding author

Correspondence to Kaissar Yammine.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assi, C., Bonnel, F., Mansour, J. et al. The gracilis and semitendinosus muscles: a morphometric study on 18 specimens with clinical implications. Surg Radiol Anat 44, 813–820 (2022). https://doi.org/10.1007/s00276-022-02925-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-022-02925-8

Keywords

Navigation