Skip to main content

Advertisement

Log in

The adaption of the bony microstructure of the human glenoid cavity as a result of long-term biomechanical loading

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Structural arrangements of the bony microstructure of a joint through adaptational processes are thought to be determined by the biomechanical demands and its changes. Pursuing this theory of “form follows the biomechanical function”, the load distribution of the glenoid cavity, as it is mirrored in its mineralization pattern, should link not only to its thickness distribution, but also will have an impact onto the trabecular network below. To prove and confirm this hypothesis, we analysed the mineral distribution in correlation to the subchondral bone plates thickness and the distribution of architectural parameters of the trabecular network below. Our findings clearly state an inhomogeneous but regular and reproducible mineral distribution pattern in respect to the biomechanical demands and a thickness of the subchondral bone plate which shows a significant correlation (78–93%). As for the trabecular network below, the distribution of the analysed parameters also revealed an inhomogeneous distribution with a regular pattern in correlation to the biomechanical impact. We found distinctive maxima of material distribution and stability (bone volume 79%, plate-like architecture 77%) situated below areas of high long-term load intake. With increasing depth, the trabecular network administers the expression of each structural parameter following the fact that the strain energy gets more and more evenly distributed and changes from a high degree of differentiation just beneath the SBP to a more equal distribution within the deeper areas. After all, the biomechanical situation of a joint directly influences the bony formation of the subchondral bone plate and the trabecular network below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Birkenhäger-Frenkel D, Courpron P, Hüpscher E, Clermonts E, Coutinho M, Schmitz P, Meunier P (1988) Age-related changes in cancellous bone structure. A two-dimensional study in the transiliac and iliac crest biopsy sites. Bone Miner 4:197–216

    PubMed  Google Scholar 

  2. Bouchaib J, Clavert P, Kempf J-F, Kahn J-L (2014) Morphological analysis of the glenoid version in the axial plane according to age. Surg Radiol Anat 36:579–585

    Article  PubMed  Google Scholar 

  3. Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int 36:S19–S24

    Article  PubMed  Google Scholar 

  4. Carter DR, Beaupré GS (2007) Skeletal function and form: mechanobiology of skeletal development, aging, and regeneration. Cambridge University Press, Cambridge

    Google Scholar 

  5. Cheal E, Snyder B, Nunamaker D, Hayes W (1987) Trabecular bone remodeling around smooth and porous implants in an equine patellar model. J Biomech 20:1121–1134

    Article  CAS  PubMed  Google Scholar 

  6. Cowin SC (2001) Bone mechanics handbook. CRC Press, London

    Book  Google Scholar 

  7. Day J, Ding M, Odgaard A, Sumner D, Hvid I, Weinans H (2000) Parallel plate model for trabecular bone exhibits volume fraction-dependent bias. Bone 27:715–720

    Article  CAS  PubMed  Google Scholar 

  8. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  PubMed  Google Scholar 

  9. Eckstein F, Muller-Gerbl M, Putz R (1992) Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat 180(Pt 3):425–433

    PubMed  PubMed Central  Google Scholar 

  10. Engelke K, Karolczak M, Lutz A, Seibert U, Schaller S, Kalender W (1999) Micro-CT. Technology and application for assessing bone structure. Der Radiol 39:203–212

    CAS  Google Scholar 

  11. Feldkamp LA, Goldstein SA, Parfitt MA, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    Article  CAS  PubMed  Google Scholar 

  12. Frich LH, Odgaard A, Dalstra M (1998) Glenoid bone architecture. J Shoulder Elbow Surg 7:356–361

    Article  CAS  PubMed  Google Scholar 

  13. Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Programs Biomed 1:15–23

    Article  Google Scholar 

  14. Hoechel S, Schulz G, Müller-Gerbl M (2015) Insight into the 3D-trabecular architecture of the human patella. Ann Anat Anat Anz 200:98–104

    Article  Google Scholar 

  15. Hoechel S, Wirz D, Muller-Gerbl M (2012) Density and strength distribution in the human subchondral bone plate of the patella. Int Orthop 36:1827–1834

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706

    Article  CAS  PubMed  Google Scholar 

  17. Jacobs C, Yellowley C, Davis B, Zhou Z, Cimbala J, Donahue H (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kellgren J, Lawrence J (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kraljević M, Zumstein V, Hügli R, Müller-Gerbl M (2013) A comparison of subchondral bone mineralization between the glenoid cavity and the humeral head on 57 cadaverous shoulder joints. Surg Radiol Anat 35:295–300

    Article  PubMed  Google Scholar 

  20. Lehtinen JT, Tingart MJ, Apreleva M, Warner JJ (2004) Total, trabecular, and cortical bone mineral density in different regions of the glenoid. J Shoulder Elbow Surg 13:344–348

    Article  PubMed  Google Scholar 

  21. Lim D, Seliktar R, Wee J-Y, Tom J, Nunes L (2006) The effect of the loading condition corresponding to functional shoulder activities on trabecular architecture of glenoid. J Biomech Eng 128:250–258

    Article  PubMed  Google Scholar 

  22. Muller-Gerbl M (1998) The subchondral bone plate. Adv Anat Embryol Cell Biol 141:III–XI (1–134)

    CAS  PubMed  Google Scholar 

  23. Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1989) Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skelet Radiol 18:507–512

    Article  CAS  Google Scholar 

  24. Muller-Gerbl M, Putz R, Hodapp N, Schulte E, Wimmer B (1990) Demonstration of subchondral density pattern using CT-osteoabsorptiometry (CT-OAM) for the assessment of individual joint stress in live patients. Z Orthop Ihre Grenzgeb 128:128–133. https://doi.org/10.1055/s-2008-1039487

    Article  CAS  PubMed  Google Scholar 

  25. Muller-Gerbl M, Weisser S, Linsenmeier U (2008) The distribution of mineral density in the cervical vertebral endplates. Eur Spine J 17:432–438. https://doi.org/10.1007/s00586-008-0601-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nowakowski AM, Deyhle H, Zander S, Leumann A, Müller-Gerbl M (2013) Micro CT analysis of the subarticular bone structure in the area of the talar trochlea. Surg Radiol Anat 35:283–293

    Article  PubMed  PubMed Central  Google Scholar 

  27. Owaydhah WH, Alobaidy MA, Alraddadi AS, Soames RW (2017) Three-dimensional analysis of the proximal humeral and glenoid geometry using MicroScribe 3D digitizer. Surg Radiol Anat 39:767–772

    Article  PubMed  Google Scholar 

  28. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  CAS  PubMed  Google Scholar 

  29. Schulz CU, Anetzberger H, Pfahler M, Refior HJ, Müller-Gerbl M (2004) Anterior shoulder instability modifies glenoid subchondral bone density. Clin Orthop 423:259–263

    Article  Google Scholar 

  30. Shimizu T, Iwasaki N, Nishida K, Minami A, Funakoshi T (2012) Glenoid stress distribution in baseball players using computed tomography osteoabsorptiometry: a pilot study. Clin Orthop 470:1534–1539

    Article  PubMed  PubMed Central  Google Scholar 

  31. Skirving AP (1999) Total shoulder arthroplasty—current problems and possible solutions. J Orthop Sci 4:42–53

    Article  CAS  PubMed  Google Scholar 

  32. Soslowsky LJ, Flatow EL, Bigliani LU, Mow VC (1992) Articular geometry of the glenohumeral joint. Clin Orthop 285:181–190

    Google Scholar 

  33. Wang L, Ciani C, Doty SB, Fritton SP (2004) Delineating bone’s interstitial fluid pathway in vivo. Bone 34:499–509

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wolff J (1986) The law of bone remodelling. Springer, Berlin

    Book  Google Scholar 

  35. Zumstein V, Kraljević M, Conzen A, Hoechel S, Müller-Gerbl M (2014) Thickness distribution of the glenohumeral joint cartilage: a quantitative study using computed tomography. Surg Radiol Anat 36:327–331

    Article  PubMed  Google Scholar 

  36. Zumstein V, Kraljević M, Hoechel S, Conzen A, Nowakowski AM, Müller-Gerbl M (2014) The glenohumeral joint—a mismatching system? A morphological analysis of the cartilaginous and osseous curvature of the humeral head and the glenoid cavity. J Orthop Res 9:34

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the “Swiss National Science Foundation” for supporting our research with the Grant 316030_133802/1.

Author information

Authors and Affiliations

Authors

Contributions

SH and MM-G designed the study. The acquisition of data was achieved by TAZ and MT. SH and TAZ were in charge of the analysis and interpretation process of drafting and revising the manuscript. All authors finally approved the submitted version.

Corresponding author

Correspondence to Sebastian Hoechel.

Ethics declarations

Conflict of interest

The authors declare that they have no financial and personal relationships with other people or organizations that could inappropriately influence their work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoechel, S., Zwimpfer, T.A., Toranelli, M. et al. The adaption of the bony microstructure of the human glenoid cavity as a result of long-term biomechanical loading. Surg Radiol Anat 41, 401–408 (2019). https://doi.org/10.1007/s00276-019-02190-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-019-02190-2

Keywords

Navigation