Skip to main content
Log in

Determination of soil hydraulic properties and its implications for mechanistic simulations and irrigation management

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Water retention θ(h) and hydraulic conductivity K(h) are mandatory soil hydraulic properties (SHP) for consistent hydrological modeling and for an efficient irrigation management. Most commonly, SHP are determined by conventional methods (CM), based on hydrostatic equilibrium and the independent measurement of saturated hydraulic conductivity, which is used as a matching point for K(h) function. Alternatively, inverse-modeling experiments allow simultaneous parameter estimation using data from transient water flow conditions. This study aims to investigate the implications of these two protocols on simulations of soil water content (θ) and crop evapotranspiration (ET), and how they affect irrigation management and scheduling for different irrigation systems and crops. The SHP obtained from CM and IM were used in simulations with the Richards equation-based SWAP hydrological model. ET and θ were simulated for passion fruit under high-frequency drip irrigation and for pasture under conventional sprinkler irrigation. The simulation performance was evaluated using measured θ and ET obtained with passion fruit under drip irrigation. Both methods (CM and IM) gave similar results in the wetter range, while in the drier soil, CM estimated higher θ than IM. These differences affected the simulated ET and irrigation scheduling. Regarding the ET and θ simulations, for the drip irrigation scenario, in which the water content in the root zone remains near saturation, both SHP determination methods produced similar results. On the other hand, for scenarios with larger irrigation intervals such as sprinkler irrigation, simulations were affected significantly, with CM likely biasing irrigation frequency and depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgements

This research was funded by the Bahia Research Foundation (FAPESB) through the young investigator Grant # TO JCB 006/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisson Jadavi Pereira da Silva.

Additional information

Communicated by Isaya Kisekka.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.J.P., Pinheiro, E.A.R. & de Jong van Lier, Q. Determination of soil hydraulic properties and its implications for mechanistic simulations and irrigation management. Irrig Sci 38, 223–234 (2020). https://doi.org/10.1007/s00271-020-00664-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-020-00664-5

Navigation