Skip to main content
Log in

Use of localized loops for the rehabilitation of on-demand pressurized irrigation distribution systems

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

Irrigation distribution systems are generally branched. They can be designed using optimization models that minimize the cost of the pipes under a number of constraints. Urban water distribution systems are generally designed as a series of interconnected closed loops which provide these systems with sufficient capability to overcome local physical failures . However, they enormously increase both the computational effort and the network cost. This research proposes an innovative approach where localized loops are used as a cost-effective solution to improve the performance of branched on-demand pressurized irrigation systems. The position of a localized loop is identified based on the overall performance improvement that can be achieved. This strategy, when necessary, also involves the increase in significantly smaller pipe diameters, where performance improvement cannot occur solely by introducing localized loops. The new approach was applied to an irrigation district in Southern Italy operating on demand. It demonstrated its effectiveness by improving the system’s overall hydraulic performance, while achieving more than 80 % cost savings, as compared to the classical rehabilitation approach. A dedicated software package that may serve, with further improvements, as a DSS platform, was developed and used to perform an accurate hydraulic performance analysis of the irrigation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alperovits E, Shamir U (1977) Design of optimal water distribution systems. Water Resour Res 13(6):885–900. doi:10.1029/WR013i006p00885

    Article  Google Scholar 

  • Alves Z, Muranho J, Albuquerque T, Ferreira A (2014) Water distribution network’s modeling and calibration. A case study based on scarce inventory data. Procedia Eng 70:31–40. doi:10.1016/j.proeng.2014.02.005

    Article  Google Scholar 

  • Babayan A, Kapelan Z, Savic D, Walters G (2005) Least-cost design of water distribution networks under demand uncertainty. J Water Resour Plan Manag 131(5):375–382. doi:10.1061/(ASCE)0733-9496(2005)131:5(375)

    Article  Google Scholar 

  • Baños R, Gil C, Reca J, Martínez J (2009a) Implementation of scatter search for multi-objective optimization: a comparative study. Comput Optim Appl 42(3):421–441. doi:10.1007/s10589-007-9121-1

    Article  Google Scholar 

  • Baños R, Gil C, Reca J, Ortega J (2009b) A Pareto-based memetic algorithm for optimization of looped water distribution systems. Eng Optim 42(3):223–240. doi:10.1080/03052150903110959

    Article  Google Scholar 

  • Baños R, Gil C, Reca J, Montoya FG (2010) A memetic algorithm applied to the design of water distribution networks. Appl Soft Comput 10(1):261–266. doi:10.1016/j.asoc.2009.07.010

    Article  Google Scholar 

  • Čistý M (2010) Hybrid genetic algorithm and linear programming method for least-cost design of water distribution systems. Water Resour Manag 24(1):1–24. doi:10.1007/s11269-009-9434-1

    Article  Google Scholar 

  • Čistý M, Bajtek Z, Becová A (2014) Irrigation network design and reconstruction and its analysis by simulation model. Sel Sci Pap J Civil Eng. doi:10.2478/sspjce-2014-0001

    Google Scholar 

  • da Conceição Cunha M, Ribeiro L (2004) Tabu search algorithms for water network optimization. Eur J Oper Res 157(3):746–758. doi:10.1016/S0377-2217(03)00242-X

    Article  Google Scholar 

  • Daccache A, Lamaddalena N, Fratino U (2010a) Assessing pressure changes in an on-demand water distribution system on drip irrigation performance—case study in Italy. J Irrig Drain Eng 136(4):261–270. doi:10.1061/(ASCE)IR.1943-4774.0000170

    Article  Google Scholar 

  • Daccache A, Lamaddalena N, Fratino U (2010b) On-demand pressurized water distribution system impacts on sprinkler network design and performance. Irrig Sci 28(4):331–339. doi:10.1007/s00271-009-0195-7

    Article  Google Scholar 

  • Estrada C, González C, Aliod R, Paño J (2009) Improved pressurized pipe network hydraulic solver for applications in irrigation systems. J Irrig Drain Eng 135(4):421–430. doi:10.1061/(ASCE)IR.1943-4774.0000100

    Article  Google Scholar 

  • Farmani R, Walters G, Savic D (2005) Trade-off between total cost and reliability for Anytown water distribution network. J Water Resour Plan Manag 131(3):161–171. doi:10.1061/(ASCE)0733-9496(2005)131:3(161)

    Article  Google Scholar 

  • Farmani R, Abadia R, Savic D (2007) Optimum design and management of pressurized branched irrigation networks. J Irrig Drain Eng 133(6):528–537. doi:10.1061/(ASCE)0733-9437(2007)133:6(528)

    Article  Google Scholar 

  • Fujiwara O, Khang DB (1990) A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour Res 26(4):539–549. doi:10.1029/WR026i004p00539

    Article  Google Scholar 

  • González Perea R, Camacho Poyato E, Montesinos P, Rodríguez Díaz JA (2014) Critical points: interactions between on-farm irrigation systems and water distribution network. Irrig Sci 32(4):255–265. doi:10.1007/s00271-014-0428-2

    Article  Google Scholar 

  • González-Cebollada C, Macarulla B (2012) Comparative analysis of design methods of pressurized irrigation networks. Irrig Drain 61(1):1–9. doi:10.1002/ird.657

    Article  Google Scholar 

  • González-Cebollada C, Macarulla B, Sallán D (2011) Recursive design of pressurized branched irrigation networks. J Irrig Drain Eng 137(6):375–382. doi:10.1061/(ASCE)IR.1943-4774.0000308

    Article  Google Scholar 

  • Hashimoto T (1980) Robustness, reliability, resiliency and vulnerability. Criteria for planning water resources system. PhD dissertation, Cornell University, USA

  • Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resour Res 18(1):14–20. doi:10.1029/WR018i001p00014

    Article  Google Scholar 

  • Jayaram N, Srinivasan K (2008) Performance-based optimal design and rehabilitation of water distribution networks using life cycle costing. Water Resour Res 44(1):W01417. doi:10.1029/2006WR005316

    Google Scholar 

  • Khadra R, Lamaddalena N (2006) A simulation model to generate the demand hydrographs in large-scale irrigation systems. Biosyst Eng 93(3):335–346. doi:10.1016/j.biosystemseng.2005.12.006

    Article  Google Scholar 

  • Khadra R, Lamaddalena N (2010) Development of a decision support system for irrigation systems analysis. Water Resour Manag 24(12):3279–3297. doi:10.1007/s11269-010-9606-z

    Article  Google Scholar 

  • Khadra R, Lamaddalena N, Inoubli N (2013) Optimization of on demand pressurized irrigation networks and on-farm constraints. Procedia Environ Sci 19:942–954. doi:10.1016/j.proenv.2013.06.104

    Article  Google Scholar 

  • Labye Y, Olson MA, Galand A, Tsiourtis N (1988) Design and optimization of irrigation distribution networks. FAO irrigation and drainage paper, vol 44. FAO, Rome

  • Lamaddalena N (1997) Integrated simulation modeling for design and performance analysis of on-demand pressurized irrigation systems. PhD thesis, Universidade Técnica de Lisboa, Lisboa

  • Lamaddalena N, Sagardoy JA (2000) Performance analysis of on-demand pressurized irrigation systems. FAO irrigation and drainage paper, vol 59. FAO, Rome

  • Lamaddalena N, Khadra R, Tlili Y (2012) Reliability-based pipe size computation of on-demand irrigation systems. Water Resour Manag 26(2):307–328. doi:10.1007/s11269-011-9919-6

    Article  Google Scholar 

  • Lansey K, Duan N, Mays L, Tung Y (1989) Water distribution system design under uncertainties. J Water Resour Plan Manag 115(5):630–645. doi:10.1061/(ASCE)0733-9496(1989)115:5(630)

    Article  Google Scholar 

  • Lejano RP (2006) Optimizing the layout and design of branched pipeline water distribution systems. Irrig Drain Syst 20(1):125–137. doi:10.1007/s10795-006-3140-4

    Article  Google Scholar 

  • Malossi D, Santovito L (1975) Progetto esecutivo dell’adduttore e della rete irrigua a servizio della zona bassa del comprensorio in Sinistra Ofanto—Relazione generale. [Executive project of the conveyance line and the distribution network of the low zone of the Sinistra Ofanto irrigation scheme—General report]

  • Muranho J, Ferreira A, Sousa J, Gomes A, Marques AS (2014) Pressure-dependent demand and leakage modelling with an EPANET extension—WaterNetGen. Procedia Eng 89:632–639. doi:10.1016/j.proeng.2014.11.488

    Article  Google Scholar 

  • Murphy LJ, Dandy GC, Simpson AR, Gransbury JC (1998) Optimisation of irrigation infrastructure rehabilitation using genetic algorithms. Paper presented at the national conference, Irrigation Association of Australia, Brisbane, Australia

  • Olsson RJ, Kapelan Z, Savic DA (2009) Probabilistic building block identification for the optimal design and rehabilitation of water distribution systems. J Hydroinf 11(2):89–105. doi:10.2166/hydro.2009.047

    Article  Google Scholar 

  • Planells Alandí P, Ortega Álvarez JF, Tarjuelo Martín-Benito JM (2007) Optimization of irrigation water distribution networks, layout included. Agric Water Manag 88(1–3):110–118. doi:10.1016/j.agwat.2006.10.004

    Article  Google Scholar 

  • Reca J, Martínez J (2006) Genetic algorithms for the design of looped irrigation water distribution networks. Water Resour Res 42(5):W05416. doi:10.1029/2005WR004383

    Google Scholar 

  • Reca J, Martínez J, Baños R, Gil C (2008) Optimal design of gravity-fed looped water distribution networks considering the resilience index. J Water Resour Plan Manag 134(3):234–238. doi:10.1061/(ASCE)0733-9496(2008)134:3(234)

    Article  Google Scholar 

  • Renault D (1999) Modernization of irrigation systems: a continuing process. In: FAO (ed) Modernization of irrigation system operations. Proceedings of the fifth international ITIS (information techniques for irrigation systems) network meeting, Aurangabad, Maharashtra, India, 28–30 October 1998, pp 7–12

  • Rezaei G, Afshar MH, Rohani M (2014) Layout optimization of looped networks by constrained ant colony optimisation algorithm. Adv Eng Softw 70:123–133. doi:10.1016/j.advengsoft.2014.01.009

    Article  Google Scholar 

  • Rossman LA (2000) EPANET 2 users manual. Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Savic D, Walters G (1997) Genetic algorithms for least-cost design of water distribution networks. J Water Resour Plan Manag 123(2):67–77. doi:10.1061/(ASCE)0733-9496(1997)123:2(67)

    Article  Google Scholar 

  • Simpson A, Dandy G, Murphy L (1994) genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 120(4):423–443. doi:10.1061/(ASCE)0733-9496(1994)120:4(423)

    Article  Google Scholar 

  • Todini E (2000) Looped water distribution networks design using a resilience index based heuristic approach. Urban Water 2(2):115–122. doi:10.1016/S1462-0758(00)00049-2

    Article  Google Scholar 

  • van Zyl J, Savic D, Walters G (2004) Operational optimization of water distribution systems using a hybrid genetic algorithm. J Water Resour Plan Manag 130(2):160–170. doi:10.1061/(ASCE)0733-9496(2004)130:2(160)

    Article  Google Scholar 

  • Walski TM, Chase DV, Savic DA, Grayman W, Beckwith S, Koelle E (2003) Advanced water distribution modeling and management, 1st edn. Haestad Methods Inc, Waterbury

    Google Scholar 

  • Wu W, Maier HR, Simpson AR (2013) Multiobjective optimization of water distribution systems accounting for economic cost, hydraulic reliability, and greenhouse gas emissions. Water Resour Res 49(3):1211–1225. doi:10.1002/wrcr.20120

    Article  Google Scholar 

  • WWAP (2012) The United Nations world water development report 4: managing water under uncertainty and risk, vol 1. UNESCO, Paris

    Google Scholar 

  • Xu C, Goulter I (1999) Reliability-based optimal design of water distribution networks. J Water Resour Plan Manag 125(6):352–362. doi:10.1061/(ASCE)0733-9496(1999)125:6(352)

    Article  Google Scholar 

  • Yoo DG, Lee HM, Sadollah A, Kim JH (2014) Optimal pipe size design for looped irrigation water supply system using harmony search: Saemangeum project area. Sci World J Article ID 651763 (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Lamaddalena.

Additional information

Communicated by G. Merkley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamaddalena, N., Khadra, R. & Fouial, A. Use of localized loops for the rehabilitation of on-demand pressurized irrigation distribution systems. Irrig Sci 33, 453–468 (2015). https://doi.org/10.1007/s00271-015-0481-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-015-0481-5

Keywords

Navigation