Skip to main content
Log in

Preclinical Evaluation of the Accero Stent: Flow Remodelling Effect on Aneurysm, Vessel Reaction and Side Branch Patency

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

It has been hypothesized that microstents which are used to prevent coil protrusion in the treatment of cerebral aneurysms may have flow diverting and therefore occlusive effects. In a rabbit elastase aneurysm model, we investigated the aneurysm occlusion rate and vessel reaction of a braided Accero stent prototype with porosity in the lower range of other available (non-flow-diverter) microstents.

Methods

Ten aneurysms were induced the right subclavian artery in New Zealand white rabbits and treated with the Accero stent prototype. In each subject, a second stent was implanted in the abdominal aorta to cover the origins of branch arteries. Angiographic follow-up and explantation of the devices and aneurysms for histological analysis were performed after 3 months (n = 5) and 6 months (n = 5).

Results

Grades I (< 50%) and II (> 50%) occlusion rates were observed in 9 (90%) and 1 (10%) of ten aneurysms treated with the stent device. The mean reduction in contrast filling at 6 months was 42.1% (p = .02). Neointima thickness was significantly higher in the subclavian artery than in the abdominal aorta after 3 (p = .03), whereas not after 6 months (p = .1). No cases of inadequate wall apposition, branch artery occlusion or stent thrombosis were observed.

Conclusion

The present study showed flow remodelling properties of the device prototype with progredient aneurysm occlusion. A larger in vivo study with induced aneurysm should be done to confirm these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lieber BB, Stancampiano AP, Wakhloo AK. Alteration of hemodynamics in aneurysm models by stenting: influence of stent porosity. Ann Biomed Eng. 1997;25(3):460–9.

    Article  CAS  Google Scholar 

  2. Han PP, Albuquerque FC, Ponce FA, MacKay CI, Zabramski JM, Spetzler RF, et al. Percutaneous intracranial stent placement for aneurysms. J Neurosurg. 2003;99(1):23–30. https://doi.org/10.3171/jns.2003.99.1.0023.

    Article  PubMed  Google Scholar 

  3. Wang C, Tian Z, Liu J, Jing L, Paliwal N, Wang S, et al. Flow diverter effect of LVIS stent on cerebral aneurysm hemodynamics: a comparison with enterprise stents and the pipeline device. J Transl Med. 2016;14(1):199. https://doi.org/10.1186/s12967-016-0959-9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aydin K, Barburoglu M, Sencer S, Berdikhojayev M, Coskun B, Akpek S. Flow diversion with low-profile braided stents for the treatment of very small or uncoilable intracranial aneurysms at or distal to the circle of Willis. AJNR Am J Neuroradiol. 2017;38(11):2131–7. https://doi.org/10.3174/ajnr.A5362.

    Article  CAS  PubMed  Google Scholar 

  5. Cagnazzo F, Cappucci M, Dargazanli C, Lefevre PH, Gascou G, Riquelme C, et al. Flow-diversion effect of LEO stents: aneurysm occlusion and flow remodeling of covered side branches and perforators. AJNR Am J Neuroradiol. 2018;39(11):2057–63. https://doi.org/10.3174/ajnr.A5803.

    Article  CAS  PubMed  Google Scholar 

  6. Pumar JM, Lete I, Pardo MI, Vazquez-Herrero F, Blanco M. LEO stent monotherapy for the endovascular reconstruction of fusiform aneurysms of the middle cerebral artery. AJNR Am J Neuroradiol. 2008;29(9):1775–6. https://doi.org/10.3174/ajnr.A1155.

    Article  CAS  PubMed  Google Scholar 

  7. Lanzino G, Wakhloo AK, Fessler RD, Hartney ML, Guterman LR, Hopkins LN. Efficacy and current limitations of intravascular stents for intracranial internal carotid, vertebral, and basilar artery aneurysms. J Neurosurg. 1999;91(4):538–46. https://doi.org/10.3171/jns.1999.91.4.0538.

    Article  CAS  PubMed  Google Scholar 

  8. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ. A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke J Cereb Circ. 2007;38(8):2346–52. https://doi.org/10.1161/STROKEAHA.106.479576.

    Article  Google Scholar 

  9. Ahlhelm F, Roth C, Kaufmann R, Schulte-Altedorneburg G, Romeike BF, Reith W. Treatment of wide-necked intracranial aneurysms with a novel self-expanding two-zonal endovascular stent device. Neuroradiology. 2007;49(12):1023–8. https://doi.org/10.1007/s00234-007-0281-6.

    Article  PubMed  Google Scholar 

  10. Kulcsar Z, Houdart E, Bonafe A, Parker G, Millar J, Goddard AJ, et al. Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am J Neuroradiol. 2011;32(1):20–5. https://doi.org/10.3174/ajnr.A2370.

    Article  CAS  PubMed  Google Scholar 

  11. Yavuz K, Geyik S, Saatci I, Cekirge HS. Endovascular treatment of middle cerebral artery aneurysms with flow modification with the use of the pipeline embolization device. AJNR Am J Neuroradiol. 2014;35(3):529–35. https://doi.org/10.3174/ajnr.A3692.

    Article  CAS  PubMed  Google Scholar 

  12. Brinjikji W, Lanzino G, Cloft HJ, Siddiqui AH, Boccardi E, Cekirge S, et al. risk factors for ischemic complications following pipeline embolization device treatment of intracranial aneurysms: results from the IntrePED study. AJNR Am J Neuroradiol. 2016;37(9):1673–8. https://doi.org/10.3174/ajnr.A4807.

    Article  CAS  PubMed  Google Scholar 

  13. Pumar JM, Banguero A, Cuellar H, Guimaraens L, Masso J, Miralbes S, et al. treatment of intracranial aneurysms with the SILK embolization device in a multicenter study. Retrosp Data Anal Neurosurg. 2017. https://doi.org/10.1093/neuros/nyw123.

    Article  Google Scholar 

  14. Altes TA, Cloft HJ, Short JG, DeGast A, Do HM, Helm GA, et al. 1999 ARRS Executive Council Award. Creation of saccular aneurysms in the rabbit: a model suitable for testing endovascular devices. American Roentgen Ray Society. AJR Am J Roentgenol. 2000;174(2):349–54. https://doi.org/10.2214/ajr.174.2.1740349.

    Article  CAS  PubMed  Google Scholar 

  15. Fujiwara NH, Cloft HJ, Marx WF, Short JG, Jensen ME, Kallmes DF. Serial angiography in an elastase-induced aneurysm model in rabbits: evidence for progressive aneurysm enlargement after creation. AJNR Am J Neuroradiol. 2001;22(4):698–703.

    CAS  PubMed  Google Scholar 

  16. Kamran M, Yarnold J, Grunwald IQ, Byrne JV. Assessment of angiographic outcomes after flow diversion treatment of intracranial aneurysms: a new grading schema. Neuroradiology. 2011;53(7):501–8. https://doi.org/10.1007/s00234-010-0767-5.

    Article  PubMed  Google Scholar 

  17. Safain MG, Roguski M, Heller RS, Malek AM. Flow diverter therapy with the pipeline embolization device is associated with an elevated rate of delayed fluid-attenuated inversion recovery lesions. Stroke J Cereb Circ. 2016;47(3):789–97. https://doi.org/10.1161/STROKEAHA.115.010522.

    Article  CAS  Google Scholar 

  18. Zhou G, Su M, Yin YL, Li MH. Complications associated with the use of flow-diverting devices for cerebral aneurysms: a systematic review and meta-analysis. Neurosurg Focus. 2017;42(6):E17. https://doi.org/10.3171/2017.3.FOCUS16450.

    Article  PubMed  Google Scholar 

  19. Matsuda Y, Chung J, Keigher K, Lopes D. A comparison between the new low-profile visualized intraluminal support (LVIS Blue) stent and the flow redirection endoluminal device (FRED) in bench-top and cadaver studies. J Neurointerv Surg. 2017. https://doi.org/10.1136/neurintsurg-2017-013074.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mohlenbruch MA, Kizilkilic O, Killer-Oberpfalzer M, Baltacioglu F, Islak C, Bendszus M, et al. multicenter experience with FRED Jr flow re-direction endoluminal device for intracranial aneurysms in small arteries. AJNR Am J Neuroradiol. 2017;38(10):1959–65. https://doi.org/10.3174/ajnr.A5332.

    Article  CAS  PubMed  Google Scholar 

  21. Xu D, Zhang C, Wang T, Wang C, Kallmes DF, Lanzino G, et al. Evaluation of enterprise stent-assisted coiling and telescoping stent technique as treatment of supraclinoid blister aneurysms of the internal carotid artery. World Neurosurg. 2018;110:e890–6. https://doi.org/10.1016/j.wneu.2017.11.119.

    Article  PubMed  Google Scholar 

  22. Bouillot P, Brina O, Ouared R, Lovblad KO, Farhat M, Pereira VM. Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS one. 2014;9(12):e113762. https://doi.org/10.1371/journal.pone.0113762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Suzuki T, Takao H, Fujimura S, Dahmani C, Ishibashi T, Mamori H, et al. Selection of helical braided flow diverter stents based on hemodynamic performance and mechanical properties. J Neurointerv Surg. 2017;9(10):999–1005. https://doi.org/10.1136/neurintsurg-2016-012561.

    Article  PubMed  Google Scholar 

  24. Kim YJ, Ko JH. Sole stenting with large cell stents for very small ruptured intracranial aneurysms. Interv Neuroradiol J Perither Neuroradiol Surg Proced Relat Neurosci. 2014;20(1):45–53. https://doi.org/10.15274/INR-2014-10007.

    Article  Google Scholar 

  25. Kallmes DF, Ding YH, Dai D, Kadirvel R, Lewis DA, Cloft HJ. A second-generation, endoluminal, flow-disrupting device for treatment of saccular aneurysms. AJNR Am J Neuroradiol. 2009;30(6):1153–8. https://doi.org/10.3174/ajnr.A1530.

    Article  CAS  PubMed  Google Scholar 

  26. Sadasivan C, Cesar L, Seong J, Rakian A, Hao Q, Tio FO, et al. An original flow diversion device for the treatment of intracranial aneurysms: evaluation in the rabbit elastase-induced model. Stroke J Cereb Circ. 2009;40(3):952–8. https://doi.org/10.1161/STROKEAHA.108.533760.

    Article  Google Scholar 

  27. Ley D, Muhl-Benninghaus R, Yilmaz U, Korner H, Cattaneo GF, Mailander W, et al. The Derivo embolization device, a second-generation flow diverter for the treatment of intracranial aneurysms, evaluated in an elastase-induced aneurysm model. Clin Neuroradiol. 2015. https://doi.org/10.1007/s00062-015-0493-9.

    Article  PubMed  Google Scholar 

  28. Wang K, Huang Q, Hong B, Li Z, Fang X, Liu J. Correlation of aneurysm occlusion with actual metal coverage at neck after implantation of flow-diverting stent in rabbit models. Neuroradiology. 2012;54(6):607–13. https://doi.org/10.1007/s00234-011-0922-7.

    Article  PubMed  Google Scholar 

  29. Cho SH, Jo WI, Jo YE, Yang KH, Park JC, Lee DH. Bench-top comparison of physical properties of 4 commercially-available self-expanding intracranial stents. Neurointervention. 2017;12(1):31–9. https://doi.org/10.5469/neuroint.2017.12.1.31.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gester K, Luchtefeld I, Busen M, Sonntag SJ, Linde T, Steinseifer U, et al. In vitro evaluation of intra-aneurysmal, flow-diverter-induced thrombus formation: a feasibility study. AJNR Am J Neuroradiol. 2016;37(3):490–6. https://doi.org/10.3174/ajnr.A4555.

    Article  CAS  PubMed  Google Scholar 

  31. Dai D, Ding YH, Kadirvel R, Rad AE, Lewis DA, Kallmes DF. Patency of branches after coverage with multiple telescoping flow-diverter devices: an in vivo study in rabbits. AJNR Am J Neuroradiol. 2012;33(1):171–4. https://doi.org/10.3174/ajnr.A2879.

    Article  CAS  PubMed  Google Scholar 

  32. Simgen A, Ley D, Roth C, Yilmaz U, Korner H, Muhl-Benninghaus R, et al. Evaluation of a newly designed flow diverter for the treatment of intracranial aneurysms in an elastase-induced aneurysm model, in New Zealand white rabbits. Neuroradiology. 2013. https://doi.org/10.1007/s00234-013-1296-9.

    Article  PubMed  Google Scholar 

  33. Simgen A, Ley D, Roth C, Cattaneo GF, Muhl-Benninghaus R, Muller A, et al. Evaluation of occurring complications after flow diverter treatment of elastase-induced aneurysm in rabbits using micro-CT and MRI at 9.4 T. Neuroradiology. 2016;58(10):987–96. https://doi.org/10.1007/s00234-016-1730-x.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the German Ministry of Economic Affairs and Energy (Grant No KF2335804AJ2) and partially funded by Acandis GmbH, Pforzheim, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Mühl-Benninghaus.

Ethics declarations

Conflict of interest

Giorgio Cattaneo was engineer at the company Acandis GmbH until August 2019, Andreas Ding is engineer at the company Acandis GmbH (Pforzheim, Germany). Both served as proctors during this study.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This study obtained approval by the local animal protection committee (No. 44/13).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mühl-Benninghaus, R., Abboud, R., Ding, A. et al. Preclinical Evaluation of the Accero Stent: Flow Remodelling Effect on Aneurysm, Vessel Reaction and Side Branch Patency. Cardiovasc Intervent Radiol 42, 1786–1794 (2019). https://doi.org/10.1007/s00270-019-02345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-019-02345-z

Keywords

Navigation