Skip to main content

Advertisement

Log in

Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics

  • Laboratory Investigation
  • Published:
CardioVascular and Interventional Radiology Aims and scope Submit manuscript

Abstract

Purpose

The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues.

Methods

The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012–October 2013) and post-implementation (December 2013–April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing.

Results

Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2–5 passes depending on needle cut and tissue type.

Conclusion

Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol. 2013;31:1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lalji UC, Wildberger JE, Zur Hausen A, Bendek M, Dingemans A-MC, Hochstenbag M, et al. CT-Guided percutaneous transthoracic needle biopsies using 10G large-core needles: initial experience. Cardiovasc Intervent Radiol. 2015;38:1603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hiley CT, Le Quesne J, Santis G, Sharpe R, de Castro DG, Middleton G, et al. Challenges in molecular testing in non-small-cell lung cancer patients with advanced disease. Lancet. 2016;388:1002–11.

    Article  PubMed  Google Scholar 

  4. Corless CL. Next-generation sequencing in cancer diagnostics. J Mol Diagn. 2016;18:813–6.

    Article  PubMed  Google Scholar 

  5. Pritchard CC, Salipante SJ, Koehler K, Smith C, Scroggins S, Wood B, et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J Mol Diagn. 2014;16:56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Austin MC, Bs CS, Pritchard CC, Tait JF. DNA yield from tissue samples in surgical pathology and minimum tissue requirements for molecular testing. Arch Pathol Lab Med. 2016;140:130–3.

    Article  PubMed  Google Scholar 

  7. Cho M, Ahn S, Hong M, Bang H, Van Vrancken M, Kim S, et al. Tissue recommendations for precision cancer therapy using next generation sequencing: a comprehensive single cancer center’s experiences. Oncotarget. 2017;8:42478–86.

    PubMed  PubMed Central  Google Scholar 

  8. Yang C-S, Choi E, Idrees MT, Chen S, Wu HH. Percutaneous biopsy of the renal mass: FNA or core needle biopsy? Cancer. 2017;125:407–15.

    Google Scholar 

  9. Patel K, Kinnear D, Quintanilla NM, Hicks J, Castro E, Curry C, et al. Optimal diagnostic yield achieved with on-site pathology evaluation of fine-needle aspiration–assisted core biopsies for pediatric osseous lesions: a single-center experience. Arch Pathol Lab Med. 2017;141:678–83.

    Article  PubMed  Google Scholar 

  10. Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP, Routbort MJ, et al. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol. 2017;30:499–508.

    Article  PubMed  Google Scholar 

  11. Roy-Chowdhuri S, Goswami RS, Chen H, Patel KP, Routbort MJ, Singh RR, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol. 2015;123:659–68.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider F, Smith MA, Lane MC, Pantanowitz L, Dacic S, Ohori NP. Adequacy of core needle biopsy specimens and fine-needle aspirates for molecular testing of lung adenocarcinomas. Am J Clin Pathol. 2015;143:193–200 (quiz 306).

    Article  PubMed  Google Scholar 

  13. Tam AL, Lim HJ, Wistuba II, Tamrazi A, Kuo MD, Ziv E, et al. Image-guided biopsy in the era of personalized cancer care: proceedings from the society of interventional radiology research consensus panel. J Vasc Interv Radiol. 2016;27(1):8–19.

    Article  PubMed  Google Scholar 

  14. Moore HM, Compton CC, Lim MD, Vaught J, Christiansen KN, Alper J. 2009 Biospecimen research network symposium: advancing cancer research through biospecimen science. Cancer Res. 2009;69:6770–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta S, Wallace MJ, Cardella JF, Kundu S, Miller DL, Rose SC, et al. Quality improvement guidelines for percutaneous needle biopsy. J Vasc Interv Radiol. 2010;21:969–75.

    Article  PubMed  Google Scholar 

  16. Focke CM, Decker T, van Diest PJ. The reliability of histological grade in breast cancer core needle biopsies depends on biopsy size: a comparative study with subsequent surgical excisions. Histopathology. 2016;69:1047–54.

    Article  PubMed  Google Scholar 

  17. Häggarth L, Ekman P, Egevad L. A new core-biopsy instrument with an end-cut technique provides prostate biopsies with increased tissue yield. BJU Int. 2002;90:51–5.

    Article  PubMed  Google Scholar 

  18. Veltri A, Bargellini I, Giorgi L, Almeida PAMS, Akhan O. CIRSE guidelines on percutaneous needle biopsy (PNB). Cardiovasc Interv Radiol. 2017. https://doi.org/10.1007/s00270-017-1658-5.

    Google Scholar 

  19. Geraghty PR, Kee ST, McFarlane G, Razavi MK, Sze DY, Dake MD. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology. 2003;229:475–81.

    Article  PubMed  Google Scholar 

  20. Abe H, Schmidt RA, Sennett CA, Shimauchi A, Newstead GM. US-guided core needle biopsy of axillary lymph nodes in patients with breast cancer: why and how to do it. Radiographics. 2007;27(Suppl 1):S91–9.

    Article  PubMed  Google Scholar 

  21. Ward SR, Lieber RL. Density and hydration of fresh and fixed human skeletal muscle. J Biomech. 2005;38:2317–20.

    Article  PubMed  Google Scholar 

  22. RStudio Team. RStudio: integrated development for R [Internet]. Boston: RStudio, Inc. (2015). http://www.rstudio.com/.

  23. Kobara H, Mori H, Rafiq K, Fujihara S, Nishiyama N, Chiyo T, et al. Analysis of the amount of tissue sample necessary for mitotic count and Ki-67 index in gastrointestinal stromal tumor sampling. Oncol Rep. 2015;33:215–22.

    Article  PubMed  Google Scholar 

  24. Solomon SB, Zakowski MF, Pao W, Thornton RH, Ladanyi M, Kris MG, et al. Core needle lung biopsy specimens: adequacy for EGFR and KRAS mutational analysis. AJR Am J Roentgenol. 2010;194:266–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tam AL, Kim ES, Lee JJ, Ensor JE, Hicks ME, Tang X, et al. Feasibility of image-guided transthoracic core-needle biopsy in the BATTLE lung trial. J Thorac Oncol. 2013;8:436–42.

    Article  PubMed  Google Scholar 

  26. Pirker R, Herth FJF, Kerr KM, Filipits M, Taron M, Gandara D, et al. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol. 2010;5:1706–13.

    Article  PubMed  Google Scholar 

  27. Dacic S. Molecular diagnostics of lung carcinomas. Arch Pathol Lab Med. 2011;135:622–9.

    Article  CAS  PubMed  Google Scholar 

  28. Dogan HS, Eskicorapci SY, Ertoy-Baydar D, Akdogan B, Gunay LM, Ozen H. Can we obtain better specimens with an end-cutting prostatic biopsy device? Eur Urol. 2005;47(3):297–301.

    Article  PubMed  Google Scholar 

  29. Ubhayakar GN, Li WY, Corbishley CM, Patel U. Improving glandular coverage during prostate biopsy using a long-core needle: technical performance of an end-cutting needle. BJU Int. 2002;89:40–3.

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Wan B, Li C, Wang J, Fu Q, Zhao W, et al. Diagnostic yield and complications using a 20 gauge prostate biopsy needle versus a standard 18 gauge needle: a randomized controlled study. Urol J. 2015;12:2329–33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh P. Shah.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, N.S., Ge, B.H., Pan, L.Y. et al. Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics. Cardiovasc Intervent Radiol 41, 489–495 (2018). https://doi.org/10.1007/s00270-017-1861-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00270-017-1861-4

Keywords

Navigation