Skip to main content

Advertisement

Log in

Compressibility of hingganite-(Y): high-pressure single crystal X-ray diffraction study

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Behaviour of hingganite-(Y), Y2□Be2Si2O8(OH)2, on compression to 47 GPa has been studied by synchrotron-based in situ high-pressure single-crystal X-ray diffraction at room temperature in a diamond anvil cell. In the studied pressure range no obvious phase transitions have been observed. The compression of hingganite-(Y) crystal structure is anisotropic, with b axis showing the maximal compressibility. A fit of the experimental pressure–volume data by the Birch-Murnaghan third-order equation of state yielded the bulk modulus of 131(2) GPa and its pressure first derivative of 3.5(2). The difference between high-pressure behaviour of hingganite-(Y) and structurally related datolite is governed by the different chemical nature of interlayer cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agilent. CrysAlis PRO. Agilent Technologies Ltd.: Yarnton, Oxfordshire, England, 2014

  • Alberti A, Sacerdoti M, Quartieri S, Vezzalini G (1999) Heating-induced phase transformation in zeolite brewsterite: new 4- and 5-coordinated (Si, Al) sites. Phys Chem Miner 26:181–186

    Google Scholar 

  • Angel RJ (1997) Transformation of fivefold-coordinated silicon to octahedral silicon calcium silicate, CaSi2O5. Am Miner 82:836–839

    Google Scholar 

  • Angel R (2000) Equation of state. Rev Mineral Geochem 41:35–60

    Google Scholar 

  • Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit-7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419

    Google Scholar 

  • Angel RJ, Ross NL, Seifert F, Fliervoet TF (1996) Structural characterization of pentacoordinate silicon in a calcium silicate. Nature 384:441–443

    Google Scholar 

  • Bačík P, Miyawaki R, Atencio D, Camará F, Fridrichová J (2017) Nomenclature of gadolinite supergroup. Eur J Mineral 29:1067–1082

    Google Scholar 

  • Badro J, Barrat JL, Gillet P (1996) Numerical simulation of α-quartz under nonhydrostatic compression: memory glass and five-coordinated crystalline phases. Phys Rev Lett 76:772–775

    Google Scholar 

  • Badro J, Teter DM, Downs RT, Gillet Ph, Hemsley RJ, Barrat J-L (1997) Theoretical study of a five-coordinated silica polymorph. Phys Rev B 56:5797–5806

    Google Scholar 

  • Baur WH (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Cryst B30:1195–1215

    Google Scholar 

  • Bubnova RS, Firsova VA, Filatov SK (2013) Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (Theta to Tensor-TTT). Glass Phys Chem 39:347–350

    Google Scholar 

  • Bykova E, Bykov M, Cernok A, Tidholm J, Simak SI, Hellman O, Belov MP, Abrikosov IA, Liermann H-P, Hanfland M, Prakapenka VB, Prescher C, Dubrovinskaia N, Dubrovinsky L (2018) Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts. Nat Comm 9:4789

    Google Scholar 

  • Chen Y-G, Xing M, Guo Y, Lin Z, Fan X, Zhang XM (2019) BeO6 trigonal prism with ultralong Be–O observed in a deep ultraviolet optical crystal Li13BeBe6B9O27. Inorg Chem 58:2201–2207

    Google Scholar 

  • Demartin F, Minaglia A, Gramaccioli CM (2001) Characterization of gadolinite-group minerals using crystallographic data only: the case of hingganite-(Y) from Cuasso al Monte, Italy. Can Miner 39:1105–1114

    Google Scholar 

  • Ding X, Bai G, Yuan Z, Liu J (1984) Hingganite [(Y, Ce)BeSiO5(OH)]: new data. Acta Petrol Mineral Anal 3:46–48

    Google Scholar 

  • Ding X, Bai G, Yuan Z, Sun L (1981) Yttroceberysite, a new Ce–Be-rich silicate. Geol Rev 27:459–466

    Google Scholar 

  • Dovesi R, Orlando R, Erba A, Zicovich-Wilson CM, Civalleri B, Casassa S, Maschio L, Ferrabone M, Pierre MDL, D’Arco P, Noel Y, Causa M, Rerat M, Kirtman B (2014) CRYSTAL14: a program for ab initio investigation of crystalline solids. Int J Quantum Chem 114:1287–1317

    Google Scholar 

  • Farsiyants SYu, Opaleichuk LS, Romanova VI (1989) New types of filters. Glass Ceram 46:338–339

    Google Scholar 

  • Finkelstein GJ, Dera PK, Duffy TS (2015) Phase transitions in orthopyroxene (En90) to 49 GPa from single-crystal X-ray diffraction. Phys Earth Planet Inter 244:78–86

    Google Scholar 

  • Finger LW, Hazen RM (2000) Systematics of high-pressure silicate structures. Rev Miner Geochem 41:123–155

    Google Scholar 

  • Gatti C, Casassa S (2013) TOPOND14. User’s manual. CNR-ISTM of Milano, Milano

    Google Scholar 

  • Gatti C, Saunders VR, Roetti C (1994) Crystal field effects on the topological properties of the electron density in molecular crystals. The case of urea. J Chem Phys 101:10686–10696

    Google Scholar 

  • Gorelova LA, Pakhomova AS, Aprilis G, Dubrovinsky L, Krivovichev S (2018) Pentacoordinated silicon in the high-pressure modification of datolite, CaBSiO4(OH). Inorg Chem Front 5:1653–1660

    Google Scholar 

  • Gorelova LA, Pakhomova AS, Krivovichev SV, Dubrovinsky L, Kasatkin A (2019) High pressure phase transitions of paracelsian BaAl2Si2O8. Sci Rep 9:12652

    Google Scholar 

  • Goryainov SV, Krylov AS, Vtyurin AN, Pan Y (2015) Raman study of datolite CaBSiO4(OH) at simultaneously high pressure and high temperature. J Raman Spectr 46:177–181

    Google Scholar 

  • Hazen RM, Finger LW (1979) Polyhedral tilting: a common type of pure displacive phase transition and its relationship to analcite at high pressures. Phase Trans 1:1–22

    Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative crystal chemistry: temperature, pressure, composition and the variation of crystal structure. Wiley–Blackwell, London, p 231

    Google Scholar 

  • Harris LA, Yakel HL (1966) The crystal structure of calcium beryllate, Ca12Be17O29. Acta Crystallogr 20:295–301

    Google Scholar 

  • Harris LA, Yakel HL (1967) The crystal structure of Y2BeO4. Acta Crystallogr 22:354–360

    Google Scholar 

  • Harris LA, Yakel HL (1969) The crystal structure of SrBe3O4. Acta Crystallogr 25:1647–1651

    Google Scholar 

  • Hoppe R, Schuldt D (1988) neue beryllate der alkalimetalle: Na6Be8O11. Z Anorg Allg Chem 564:61–71

    Google Scholar 

  • Howie RA, West AR (1977) The crystal structure of Rb2Be2Si2O7. Acta Crystallogr 33:381–385

    Google Scholar 

  • Hu Y, Kiefer B, Bina CR, Zhang D, Dera PK (2017) High-pressure γ-CaMgSi2O6: does penta-coordinated silicon exist in the Earth’s Mantle? Geophys Res Lett 44:11340–11348

    Google Scholar 

  • Kanzaki M, Stebbins JF, Xue X (1991) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophys Res Lett 18:463–466

    Google Scholar 

  • Kasatkin AV, Nestola F, Škoda R, Chukanov NV, Agakhanov AA, Belakovsky DI, Lanza A, Holá M (2019) Hingganite-(Nd), IMA 2019–028 CNMNC Newsletter. Min Mag 50:619

    Google Scholar 

  • Kimata M (1978) Boron behavior in the thermal decomposition of datolite. Neues Jahrb Mineral Monatsh 1978:58–70

    Google Scholar 

  • Konerskaya LP, Orlova RG, Bogdanis EP, Konarskii VD, Guseva NP (1988) Using datolite and diopside raw materials in the electrical engineering industry. Glass Ceram 45:199–201

    Google Scholar 

  • Krzhizhanovskaya MG, Gorelova LA, Bubnova RS, Pekov IV, Krivovichev SV (2018) High-temperature crystal chemistry of layered calcium borosilicates: CaBSiO4(OH) (datolite), Ca4B5Si3O15(OH)5 (‘bakerite’) and Ca2B2SiO7 (synthetic analogue of okayamalite). Phys Chem Minerals 45:463–473

    Google Scholar 

  • Kudoh Y, Kanzaki M (1998) Crystal chemical characteristics of α-CaSi2O5, a new high pressure calcium silicate with five-coordinated silicon synthesized at 1500 °C and 10 GPa. Phys Chem Miner 25:429–433

    Google Scholar 

  • Li D, Zhang P, Yan J (2014) Ab initio molecular dynamics study of high-pressure melting of beryllium oxide. Sci Rep 4:4707

    Google Scholar 

  • Lulu X, Zhizhong P (1986) Crystal structure of Xinganite. Chin J Geochem 5:280–285

    Google Scholar 

  • Lyalina LM, Selivanova EA, YeE S, Zozulya DR, Kadyrova GI (2014) Minerals of the gadolinite-(Y)-hingganite-(Y) series in the alkali granite pegmatites of the Kola Peninsula. Geol Ore Deposits 56:675–684

    Google Scholar 

  • Malczewski D, Dziurowicz M (2015) 222Rn and 220Rn emanations as a function of the absorbed α-doses from select metamict minerals. Am Miner 100:1378–1385

    Google Scholar 

  • Mann KS, Sidhu GS (2012) Verification of some low-Z silicates as gamma-ray shielding materials. Ann Nucl Energy 40:241–252

    Google Scholar 

  • Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 9:4673–4676

    Google Scholar 

  • Martonák R, Donadio D, Oganov AR, Parrinello M (2006) Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nat Mater 5:623–626

    Google Scholar 

  • Martonák R, Donadio D, Oganov AR, Parrinello M (2007) From four- to six-coordinated silica: transformation pathways from metadynamics. Phys Rev B 76:014120

    Google Scholar 

  • Milman V, Akhmatskaya EV, Nobes RH, Winkler B, Pickard CJ, White JA (2001) Systematic ab initio study of the compressibility of silicate garnets. Acta Crystallogr B 57:163–177

    Google Scholar 

  • Miyawaki R, Matsubara S, Yokoyama K, Okamoto A (2007) Hingganite-(Ce) and hingganite-(Y) from Tahara, Hirukawa-mura, Gifu Prefecture, Japan: the description on a new mineral species of the Ce-analogue of hingannite-(Y) with a refinement of the crystal structure of hingganite-(Y). J Miner Petrol Sci 102:1–7

    Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276

    Google Scholar 

  • Oganov AR, Price GD, Brodholt JP (2001) Theoretical investigation of metastable Al2SiO5 polymorphs. Acta Crystallogr A 57:548–557

    Google Scholar 

  • Pakhomova A, Aprilis G, Bykov M, Gorelova L, Krivovichev S, Belov MP, Abrikosov IA, Dubrovinsky L (2019) Penta- and hexa-coordinated beryllium and phosphorus in high-pressure modifications of CaBe2P2O8. Nat Comm 10:2800

    Google Scholar 

  • Pakhomova AS, Bykova E, Bykov M, Glazyrin K, Gasharova B, Liermann H-P, Mezouar M, Gorelova L, Krivovichev S, Dubrovinsky L (2017) Closer look into close packing: pentacoordinated silicon in the high-pressure polymorph of danburite. IUCrJ 4:671–677

    Google Scholar 

  • Peintinger MF, Oliveira DV, Bredow T (2013) Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J Comput Chem 34:451–459

    Google Scholar 

  • Perchiazzi N, Gualtieri AF, Merlino S, Kampf AR (2004) The atomic structure of bakerite and its relationship to datolite. Am Miner 89:767–776

    Google Scholar 

  • Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press Res 35:223–230

    Google Scholar 

  • Pršek J, Ondrejka M, Bačik P, Budzyń B, Uher P (2010) Metamorphic-hydrothermal REE minerals in the Bacuch magnetite deposit, Western Carpathians, Slovalia: (Sr, S)-rich monacite-(Ce) and Nd-dominant hingganite. Can Miner 48:81–94

    Google Scholar 

  • Rinaldi R, Gatta GD, Angel RJ (2010) Crystal chemistry and low-temperature behavior of datolite: a single crystal X-ray diffraction study. Am Miner 95:1413–1421

    Google Scholar 

  • Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedral. Science 172:567–570

    Google Scholar 

  • Schoenitz M, Navrotsky A, Ross N (2001) Enthalpy of formation of CaSi2O5, a quenched high-pressure phase with pentacoordinate silicon. Phys Chem Min 28:57–60

    Google Scholar 

  • Schuldt D, Hoppe R (1989a) Über synthese und aufbau von Na2[BeO2]: Na8[OBeO2BeO2BeO2BeO]. Z Anorg Allg Chem 578:119–132

    Google Scholar 

  • Schuldt D, Hoppe R (1989b) Zum Aufbau von RbNa5Be8O11. Z Anorg Allg Chem 575:77–89

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112

    Google Scholar 

  • Swanson DK, Peterson RC (1980) Polyhedral volume calculations. Can Miner 18:153–156

    Google Scholar 

  • Tarasevich BP, Isaeva LB, Kuznetsov EV, Zhenzhurist IA (1990) Boron building ceramic protecting against neutron radiation. Glass Ceram 47:175–178

    Google Scholar 

  • Tarney J, Nicol AW, Marriner GF (1973) The thermal transformation of datolite, CaBSiO4(OH), to boron-melilite. Min Mag 39:158–175

    Google Scholar 

  • Voloshin AV, YaA P, Men’shikov YuP, Povarennykh AS, Matvienko EN, Yakubovich OV, (1983) Ytterbium hingganite—a new mineral from amazonite pegmatites of the Kola Peninsula. Dokl Akad Nauk SSSR 270:1188–1192 (Russian)

  • Warren MC, Redfern AT, Angel R (1999) Change from sixfold to fivefold coordination of silicate polyhedra: insights from first-principles calculations of CaSi2O5. Phys Rev B 59:9149–9154

    Google Scholar 

  • Yakubovich OV, Matvienko EN, Voloshin AV, Simonov MA (1983) The crystal structure of hingganite-(Yb) (Y0.51Ln0.36Ca0.13)Fe0.065Be(SiO4)(OH). Sov Phys Crystallogr 28:269–271

    Google Scholar 

  • Yu N, Wang S, Ye N, Liang F, Lin Z, Luo M, Poeppelmeier KR (2016) A deep-ultraviolet nonlinear optical crystal: strontium beryllium borate fluoride with planar Be(O/F)3 groups. Chem Mater 28:4563–4571

    Google Scholar 

  • Zaccarini F, Morales-Ruano S, Scacchetti M, Garuti G, Heide K (2008) Investigation of datolite (CaB[SiO4(OH)]) from basalts in the Northern Apennines ophiolites (Italy): genetic implications. Chem Erde Geochem 68:265–277

    Google Scholar 

  • Zhang S, Li F, Xu H, Yang G (2017) Pressure-induced stable beryllium peroxide. Inorg Chem 56:5233–5238

    Google Scholar 

Download references

Acknowledgments

In situ high-pressure single-crystal X-ray diffraction measurements were carried out at the PETRA III light source at DESY, a member of the Helmholtz Association (HGF). This research was funded by the Russian Science Foundation, grant number 19-77-00038 (to LAG). LSD acknowledge financial support by DFG (DU 393/9-2) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liudmila A. Gorelova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorelova, L.A., Pakhomova, A.S., Krivovichev, S.V. et al. Compressibility of hingganite-(Y): high-pressure single crystal X-ray diffraction study. Phys Chem Minerals 47, 22 (2020). https://doi.org/10.1007/s00269-020-01090-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-020-01090-x

Keywords

Navigation