Skip to main content

Advertisement

Log in

The effect of type-B carbonate content on the elasticity of fluorapatite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The mechanical behavior of carbonate-bearing fluorapatite (CFAP) (with up to 5.5 wt% CO3) was investigated at high pressure up to 7 GPa. The incorporation of carbonate in CFAP samples was investigated by FTIR spectroscopy. The chemical formulae and cell parameters are Ca4.90Fe0.04 (PO4)2.87 (CO3)0.13 F1.23 and a = 9.3527(1), c = 6.8752(1) Å, V = 520.83(1) Å3 for the FOW CFAP (Fowey Consols area, UK), and Ca4.97Sr0.03 (PO4)2.55 (CO3)0.45 F1.42 and a = 9.3330(1), c = 6.8984(1) Å, V = 520.38(1) Å3 for the FRA CFAP (Framont region, France). Preliminary characterization at ambient conditions was done by single-crystal X-ray diffraction study. The structure refinements, in space group P63/m, confirm a type-B substitution of the phosphate (PO4)3− group by the carbonate ion (CO3)2−. The site occupancies for the C atom are 0.04 for FOW and 0.11 for FRA CFAP, in quite good agreement with the 1.6 and 5.5 wt% CO3 amount obtained by analytical methods. Single-crystal high-pressure XRD study on the two type-B CFAP samples was performed. The FOW and FRA crystals were mounted concurrently in a ETH-type DAC and cell parameters were determined at 26 different pressures up to 6.86 GPa at room T. The variation with pressure of the unit-cell parameters and volume shows no discontinuity that could be related to any possible phase transition in the P range investigated. The linear compressibility coefficients are βa = 3.63 × 10−3 GPa−1 and βc = 2.47 × 10−3 GPa−1 for FOW, and βa = 3.67 × 10−3 GPa−1 and βc = 2.65 × 10−3 GPa−1 for FRA, giving an axial anisotropy of βa:βc = 1.47:1 and 1.38:1, respectively. The P-V data were fitted by a second-order Birch–Murnaghan EoS and the resulting BM2-EoS coefficients are V0 = 519.81(7) Å3, KT0 = 92.1(3) GPa for FOW, and V0 = 518.95(9) Å3, KT0 = 89.1(4) GPa for FRA CFAP. The results obtained indicate that a 5.5 wt% CO3 content (type-B) reduces the isothermal bulk modulus by about 9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan DR, Angel RJ, Miletich R, Reichmann H, Brunet F (1996) High-pressure powder-diffraction studies of apatite (Ca5PO4)3(OH, F, Cl). Exp N° HC439, ESRF Report

  • Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Chantilly, Virginia, pp 35–59. https://doi.org/10.2138/rmg.2000.41.2

  • Angel RJ, Finger LW (2011) SINGLE: a program to control single-crystal diffractometers. J Appl Crystallogr 44:247–251. https://doi.org/10.1107/S0021889810042305

    Article  Google Scholar 

  • Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. J Appl Crystallogr 30:461–466. https://doi.org/10.1107/S0021889897000861

    Article  Google Scholar 

  • Angel RJ, Downs RT, Finger LW (2000) High-temperature–high-pressure diffractometry. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Chantilly, Virginia, pp 559–597. https://doi.org/10.2138/rmg.2000.41.16

  • Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallogr 40:26–32. https://doi.org/10.1107/S0021889806045523

    Article  Google Scholar 

  • Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419. https://doi.org/10.1515/zkri-2013-1711

    Google Scholar 

  • Angel RJ, Nimis P, Mazzucchelli ML, Alvaro M, Nestola F (2015) How large are departures from lithostatic pressure? Constraints from host–inclusion elasticity. J Metamorph Geol 33:801–813. https://doi.org/10.1111/jmg.12138

    Article  Google Scholar 

  • Ashley KT, Barkoff DW, Steele-MacInnis M (2017) Barometric constraints based on apatite inclusions in garnet. Am Mineral 102:743–749. https://doi.org/10.2138/am-2017-5898

    Article  Google Scholar 

  • Bros R, Carpena J, Sere V, Beltritti A (1996) Occurrence of Pu and fissiogenic REE in hydrothermal apatites from the fossil nuclear reactor 16 at Oklo (Gabon). Radiochim Acta 74:277–282

    Article  Google Scholar 

  • Brudevold F, Gardner DE, Smith FA (1956) The distribution of fluoride in human enamel. J Dent Res 35:420–429. https://doi.org/10.1177/00220345560350031301

    Article  Google Scholar 

  • Brunet F, Allan DR, Redfern SAT, Angel RJ, Miletich R, Reichmann HJ, Sergent J, Hanfland M (1999) Compressibility and thermal expansivity of synthetic apatites, Ca5(PO4)3X with X = OH, F and Cl. Eur J Mineral 11:1023–1035. https://doi.org/10.1127/ejm/11/6/1023

    Article  Google Scholar 

  • Comodi P, Liu Y (2000) CO3 substitution in apatite: further insight from new crystal-chemical data of Kasekere (Uganda) apatite. Eur J Mineral 12:965–974. https://doi.org/10.1127/ejm/12/5/0965

    Article  Google Scholar 

  • Comodi P, Liu Y, Zanazzi PF, Montagnoli M (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Miner 28:219–224. https://doi.org/10.1007/s002690100154

    Article  Google Scholar 

  • Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  • Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, Virginia, pp 427–454. ISBN 0-939950-60-X

  • Elliott JC, Wilson RM, Dowker SEP (2002) Apatite structures. Advances in X-ray analysis. Copyright (c)JCPDS ICDD, vol 45, pp 172–181

  • Fleet ME (2009) Infrared spectra of carbonate apatites: ν2-region bands. Biomaterials 30:1473–1481. https://doi.org/10.1016/j.biomaterials.2008.12.007

    Article  Google Scholar 

  • Fleet ME, Liu X (2004) Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. J Solid State Chem 177:3174–3182. https://doi.org/10.1016/j.jssc.2004.04.002

    Article  Google Scholar 

  • Fleet ME, Liu X (2007) Coupled substitution of type A and B carbonate in sodium-bearing apatite. Biomaterials 28:916–926. https://doi.org/10.1016/j.biomaterials.2006.11.003

    Article  Google Scholar 

  • Fleet ME, Liu X (2008a) Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. Am Mineral 93:1460–1469. https://doi.org/10.2138/am.2008.2786

    Article  Google Scholar 

  • Fleet ME, Liu X (2008b) Type A-B carbonate chlorapatite synthesized at high pressure. J Solid State Chem 181:2494–2500. https://doi.org/10.1016/j.jssc.2008.06.016

    Article  Google Scholar 

  • Fleet ME, Liu X, King PL (2004) Accommodation of the carbonate ion in apatite: an FTIR and X-ray structure study of crystals synthesized at 2–4 GPa. Am Mineral 89:1422–1432

    Article  Google Scholar 

  • Gonzalez-Platas J, Alvaro M, Nestola F, Angel RJ (2016) EosFit7-GUI: a new graphical user interface for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382. https://doi.org/10.1107/S1600576716008050

    Article  Google Scholar 

  • Henry TH (1850) On francolite, a supposed new mineral. Philos Mag 36:134–135

    Google Scholar 

  • Hughes JM (2015) The many facets of apatite. Am Mineral 100:1033–1039. https://doi.org/10.2138/am-2015-5193

    Article  Google Scholar 

  • Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, Virginia, pp 1–12. ISBN 0-939950-60-X

  • Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170. https://doi.org/10.2113/gselements.11.3.165

    Article  Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH and Cl apatites. Am Mineral 74:870–876

    Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1990) Crystal structures of natural ternary apatites: solid solution in the Ca5(PO4)3X (X = F, OH, Cl) system. Am Mineral 75:295–304

    Google Scholar 

  • Hughes JM, Nekvasil H, Ustunisik G, Lindsley DH, Coraor AE, Vaughn J, Phillips B, McCubbin FM, Woerner WR (2014) Solid solution in the fluorapatite-chlorapatite binary system: High-precision crystal structure refinements of synthetic F-Cl apatite. Am Mineral 99:369–376. https://doi.org/10.2138/am.2014.4644

    Article  Google Scholar 

  • Ivanova TI, Frank-Kamenetskaya OV, Kol’tsov AB, Ugolkov VL (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. J Solid State Chem 160:340–349. https://doi.org/10.1006/jssc.2000.9238

    Article  Google Scholar 

  • King HE, Finger LW (1979) Diffracted beam crystal centering and its application to high-pressure crystallography. J Appl Crystallogr 12:374–378. https://doi.org/10.1107/S0021889879012723

    Article  Google Scholar 

  • Klotz S, Chervin JC, Munsch P, Marchand G Le (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42(7 pp):75413. https://doi.org/10.1088/0022-3727/42/7/075413

    Article  Google Scholar 

  • Knudsen AC, Gunter ME (2002) Sedimentary phosphorites—an example: phosphoria formation, Southern Idaho, USA. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, Virginia, pp 363–389. ISBN 0-939950-60-X

  • LeGeros RZ (1965) Effect of carbonate on the lattice parameters of apatite. Nature 206:403–404

    Article  Google Scholar 

  • LeGeros RZ (1991) Calcium phosphates in oral biology and medicine. Karger, New York. https://doi.org/10.1159/isbn.978-3-318-04021-0

    Google Scholar 

  • Leventouri TH, Chakoumakos BC, Moghaddam HY, Perdikatsis V (2000) Powder neutron diffraction studies of a carbonate fluorapatite. J Mater Res 15:511–517

    Article  Google Scholar 

  • Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: Significance of carbonate. Am Mineral 96:74–80. https://doi.org/10.2138/am.2011.3535

    Article  Google Scholar 

  • Mackie PE, Young RA (1974) Fluorine-chlorine interaction in fluor-chlorapatite. J Solid State Chem 11:319–329. https://doi.org/10.1016/S0022-4596(74)80037-X

    Article  Google Scholar 

  • Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Miner 31:580–584. https://doi.org/10.1007/s00269-004-0415-x

    Article  Google Scholar 

  • McClellan GH (1980) Mineralogy of carbonate fluorapatites. J Geol Soc London 137:675–681

    Article  Google Scholar 

  • McClellan GH, Lehr JR (1969) Crystal chemical investigation of natural apatites. Am Mineral 54:1374–1391

    Google Scholar 

  • McClellan GH, Van Kauwenbergh SJ (1990) Mineralogy of sedimentary apatites. In: Notholt AJG, Jarvis I (eds) Phosphorite research and development-Geol Soc London Spec Pub vol 52, pp 23–31. https://doi.org/10.1144/GSL.SP.1990.052.01.03

  • McConnell D (1938) A structural investigation of the isomorphism of the apatite group. Am Mineral 23:1–19

    Google Scholar 

  • McCubbin FM, Mason HE, Park H, Phillips BL, Parise JB, Nekvasil H, Lindsley DH (2008) Synthesis and characterization of low-OH fluor-chlorapatite: a single-crystal XRD and NMR spectroscopic study. Am Mineral 93:210–216. https://doi.org/10.2138/am.2008.2557

    Article  Google Scholar 

  • Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, vol 41, pp 445–519. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Chantilly, Virginia. https://doi.org/10.2138/rmg.2000.41.14

  • Nathan Y (1996) Mechanism of CO3 2– substitution in carbonate-fluorapatite: evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculations—discussion. Am Mineral 81:513–514

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance, Reviews in Mineralogy and Geochemistry, vol 48. Mineralogical Society of America, Chantilly, Virginia, pp 13–49. ISBN 0-939950-60-X

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Mineral 22:163–179. https://doi.org/10.1127/0935-1221/2010/0022-2022

    Article  Google Scholar 

  • Pasteris JD (2016) A mineralogical view of apatitic biomaterials. Am Mineral 101:2594–2610. https://doi.org/10.2138/am-2016-5732

    Article  Google Scholar 

  • Perdikatsis B (1991) X-ray powder diffraction study of francolite by the Rietveld method. Mater Sci Forum, vols 79–82, 809–814

  • Pouchou JL, Pichoir F (1985) ‘PAP’ φ(ρZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 104–106

    Google Scholar 

  • Rakovan JF, Pasteris JD (2015) A technological gem: materials, medical, and environmental mineralogy of apatite. Elements 11:195–200. https://doi.org/10.2113/gselements.11.3.195

    Article  Google Scholar 

  • Regnier P, Lasaga AC, Berner RA, Han OH, Zilm KW (1994) Mechanism of CO3 2– substitution in carbonate-fluorapatite: evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculations. Am Mineral 79:809–818

    Google Scholar 

  • Sandell EB, Hey MH, McConnell D (1939) The composition of francolite. Min Mag 25:395–401

    Google Scholar 

  • Schouwink P, Miletich R, Ullrich A, Glasmacher UA, Trautmann C, Neumann R, Kohn BP (2010) Ion tracks in apatite at high pressures: the effect of crystallographic track orientation on the elastic properties of fluorapatite under hydrostatic compression. Phys Chem Miner 37:371–387. https://doi.org/10.1007/s00269-009-0340-0

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  Google Scholar 

  • Wilson RM, Elliott JC, Dowker SEP (1999) Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral 84:1406–1414

    Article  Google Scholar 

  • Wilson RM, Elliott JC, Dowker SEP, Smith RI (2004) Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data. Biomaterials 25:2205–2213. https://doi.org/10.1016/j.biomaterials.2003.08.057

    Article  Google Scholar 

  • Yi H, Balan E, Gervais C, Segalen L, Fayon F, Roche D, Person A, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Babonneau F (2013) A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am Mineral 98:1066–1069. https://doi.org/10.2138/am.2013.4445

    Article  Google Scholar 

Download references

Acknowledgements

Ravinder Sidhu is thanked for support with EMP analysis (Winnipeg). Ross J. Angel is thanked for assessment with the installation of SINGLE software at Department of Earth Sciences, University of Torino, and for making available several very useful software applications in his Web site. We are grateful to Matteo Alvaro for helpful suggestions. We thank John M. Hughes and an anonymous referee for critical reading and useful suggestions that greatly improved the manuscript. The CrisDi and Scansetti Interdepartmental Centres of University of Torino are thanked. Financial support has been provided by “Ministero dell’Istruzione, dell’Università e della Ricerca” (MIUR), MIUR-Project PRIN 2010–2011, 2010EARRRZ_007 “Crystal-chemical and structural investigations on the bulk and surfaces of carbonated apatites with amorphous and nano-crystal transitions”. FCH acknowledges support by a Canada Research Chair in Crystallography and Mineralogy and by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, and by Innovation Grants from the Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piera Benna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (CIF 56 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cámara, F., Curetti, N., Benna, P. et al. The effect of type-B carbonate content on the elasticity of fluorapatite. Phys Chem Minerals 45, 789–800 (2018). https://doi.org/10.1007/s00269-018-0962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-018-0962-1

Keywords

Navigation